Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayla O. White is active.

Publication


Featured researches published by Ayla O. White.


Journal of the National Cancer Institute | 2013

Role of Type II Pneumocyte Senescence in Radiation-Induced Lung Fibrosis

Deborah Citrin; Uma Shankavaram; Jason A. Horton; William Shield; Shuping Zhao; Hiroaki Asano; Ayla O. White; Anastasia L. Sowers; Angela Thetford; Eun Joo Chung

BACKGROUND Radiation is a commonly delivered therapeutic modality for cancer. The causes underlying the chronic, progressive nature of radiation injury in the lung are poorly understood. METHODS C57Bl/6NCr mice were exposed to thoracic irradiation (n = 3 per dose and time point for tissue collection). Microarray analysis of gene expression from irradiated murine lung was performed using one-way analysis of variance with post hoc Scheffe analysis. Senescence and type II airway epithelial cell (AECII) count were assayed in irradiated murine lung tissue (n = 3 per condition). Irradiated mice were treated with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase (NOX), and fibrosis was assessed by collagen assays. All statistical tests were two-tailed. RESULTS Gene expression in lung tissue from mice irradiated to 17.5 Gy clustered with that of aged unirradiated mice. Only fibrogenic exposures led to AECII senescence (0 Gy: 0.66% ± 0.67%; 5 Gy: 4.5% ± 1.19%; 17.5 Gy: 18.7% ± 3.05; P = .007) and depletion (0 Gy: 2.89 per alveolus ± 0.26; 5 Gy: 2.41 ± 0.19; 17.5 Gy: 1.6 ± 0.14; P < .001) at 30 weeks. Treatment of irradiated mice with DPI for 16 weeks markedly reduced collagen accumulation (5×6 Gy: 57.26 μg/lung ± 9.91; 5×6 Gy ± DPI: 36.54μg/lung ± 4.39; P = .03) and AECII senescence (5×6 Gy: 37.61% ± 4.82%; 5×6 Gy ± DPI: 12.38% ± 2.78; P < .001). CONCLUSIONS These studies identify senescence as an important process in AECII in vivo and indicate that NOX is a critical mediator of radiation-induced AECII senescence and pulmonary fibrosis.


Stem Cells | 2013

Mesenchymal stem cells inhibit cutaneous radiation‐induced fibrosis by suppressing chronic inflammation

Jason A. Horton; Kathryn Hudak; Eun Joo Chung; Ayla O. White; Bradley T. Scroggins; Jeffrey Burkeen; Deborah Citrin

Exposure to ionizing radiation (IR) can result in the development of cutaneous fibrosis, for which few therapeutic options exist. We tested the hypothesis that bone marrow‐derived mesenchymal stem cells (BMSC) would favorably alter the progression of IR‐induced fibrosis. We found that a systemic infusion of BMSC from syngeneic or allogeneic donors reduced skin contracture, thickening, and collagen deposition in a murine model. Transcriptional profiling with a fibrosis‐targeted assay demonstrated increased expression of interleukin‐10 (IL‐10) and decreased expression of IL‐1β in the irradiated skin of mice 14 days after receiving BMSC. Similarly, immunoassay studies demonstrated durable alteration of these and several additional inflammatory mediators. Immunohistochemical studies revealed a reduction in infiltration of proinflammatory classically activated CD80+ macrophages and increased numbers of anti‐inflammatory regulatory CD163+ macrophages in irradiated skin of BMSC‐treated mice. In vitro coculture experiments confirmed that BMSC induce expression of IL‐10 by activated macrophages, suggesting polarization toward a regulatory phenotype. Furthermore, we demonstrated that tumor necrosis factor‐receptor 2 (TNF‐R2) mediates IL‐10 production and transition toward a regulatory phenotype during coculture with BMSC. Taken together, these data demonstrate that systemic infusion of BMSC can durably alter the progression of radiation‐induced fibrosis by altering macrophage phenotype and suppressing local inflammation in a TNF‐R2‐dependent fashion. Stem Cells 2013;31:2231–2241


Radiation Research | 2013

Quercetin inhibits radiation-induced skin fibrosis.

Jason A. Horton; Fei Li; Eun Joo Chung; Kathryn Hudak; Ayla O. White; Kristopher W. Krausz; Frank J. Gonzalez; Deborah Citrin

Radiation induced fibrosis of the skin is a late toxicity that may result in loss of function due to reduced range of motion and pain. The current study sought to determine if oral delivery of quercetin mitigates radiation-induced cutaneous injury. Female C3H/HeN mice were fed control chow or quercetin-formulated chow (1% by weight). The right hind leg was exposed to 35 Gy of X rays and the mice were followed serially to assess acute toxicity and hind leg extension. Tissue samples were collected for assessment of soluble collagen and tissue cytokines. Human and murine fibroblasts were subjected to clonogenic assays to determine the effects of quercetin on radiation response. Contractility of fibroblasts was assessed with a collagen contraction assay in the presence or absence of quercetin and transforming growth factor-β (TGF-β). Western blotting of proteins involved in fibroblast contractility and TGF-β signaling were performed. Quercetin treatment significantly reduced hind limb contracture, collagen accumulation and expression of TGF-β in irradiated skin. Quercetin had no effect on the radioresponse of fibroblasts or murine tumors, but was capable of reducing the contractility of fibroblasts in response to TGF-β, an effect that correlated with partial stabilization of phosphorylated cofilin. Quercetin is capable of mitigating radiation induced skin fibrosis and should be further explored as a therapy for radiation fibrosis.


Clinical Cancer Research | 2011

Enhancement of 5-Fluorouracil-induced In Vitro and In Vivo Radiosensitization with MEK Inhibition

Mary Ellen Urick; Eun Joo Chung; William Shield; Naamit Gerber; Ayla O. White; Anastasia L. Sowers; Angela Thetford; Kevin Camphausen; James B. Mitchell; Deborah Citrin

Purpose: Gastrointestinal cancers frequently exhibit mutational activation of the Ras/MAPK pathway, which is implicated in resistance to ionizing radiation (IR) and chemotherapy. Concurrent radiotherapy and 5-fluorouracil (5-FU) based chemotherapy is commonly used for treatment of gastrointestinal malignancies. We previously reported radiosensitization with selumetinib, an inhibitor of MEK1/2. The purpose of the current study was to evaluate if selumetinib could enhance radiosensitivity induced by 5-FU. Experimental Design: Clonogenic survival assays were carried out with the HT29 (colorectal), HCT116 (colorectal), and MiaPaca-2 (pancreatic) cell lines using pre-IR treatment with selumetinib, 5-FU and 5-FU+selumetinib. Cell proliferation was determined using a tetrazolium conversion assay. Mitotic catastrophe and DNA repair were analyzed using immunocytochemistry. Flow cytometry was used to analyze cell cycle and apoptosis. Growth delay was used to determine effects of 5-FU+selumetinib on in vivo tumor radiosensitivity. Results: Pre-IR treatment with 5-FU+selumetinib significantly decreased clonogenic survival compared with either agent alone. Dose modifying factors at a surviving fraction of 0.1 for 5-FU+selumetinib was 1.78, 1.52, and 1.3 for HT29, HCT116, and MiaPaca-2, respectively. Cell proliferation was decreased by treatment with selumetinib+5-FU as compared with single agent treatment regardless of treatment sequencing. Enhancement of 5-FU cytotoxicity and 5-FU mediated radiosensitization with selumetinib treatment was accompanied by an increase in mitotic catastrophe and apoptosis, and reductions in Stat3 phosphorylation and survivin expression. In vivo, an additive growth delay was observed with 5-FU+selumetinib+3Gy versus 5-FU+3Gy and selumetinib alone. Conclusion: These data suggest that selumetinib can be used with 5-FU to augment radiation response. Clin Cancer Res; 17(15); 5038–47. ©2011 AACR.


Radiation Research | 2014

Transforming Growth Factor Alpha is a Critical Mediator of Radiation Lung Injury

Eun Joo Chung; Kathryn Hudak; Jason A. Horton; Ayla O. White; Bradley T. Scroggins; Shiva Vaswani; Deborah Citrin

Radiation fibrosis of the lung is a late toxicity of thoracic irradiation. Epidermal growth factor (EGF) signaling has previously been implicated in radiation lung injury. We hypothesized that TGF-α, an EGF receptor ligand, plays a key role in radiation-induced fibrosis in lung. Mice deficient in transforming growth factor (TGF-α–/–) and control C57Bl/6J (C57-WT) mice were exposed to thoracic irradiation in 5 daily fractions of 6 Gy. Cohorts of mice were followed for survival (n ≥ 5 per group) and tissue collection (n = 3 per strain and time point). Collagen accumulation in irradiated lungs was assessed by Massons trichrome staining and analysis of hydroxyproline content. Cytokine levels in lung tissue were assessed with ELISA. The effects of TGF-α on pneumocyte and fibroblast proliferation and collagen production were analyzed in vitro. Lysyl oxidase (LOX) expression and activity were measured in vitro and in vivo. Irradiated C57-WT mice had a median survival of 24.4 weeks compared to 48.2 weeks for irradiated TGF-α–/– mice (P = 0.001). At 20 weeks after irradiation, hydroxyproline content was markedly increased in C57-WT mice exposed to radiation compared to TGF-α–/– mice exposed to radiation or unirradiated C57-WT mice (63.0, 30.5 and 37.6 μg/lung, respectively, P = 0.01). C57-WT mice exposed to radiation had dense foci of subpleural fibrosis at 20 weeks after exposure, whereas the lungs of irradiated TGF-α –/– mice were largely devoid of fibrotic foci. Lung tissue concentrations of IL-1β, IL-4, TNF-α, TGF-β and EGF at multiple time points after irradiation were similar in C57-WT and TGF-α–/– mice. TGF-α in lung tissue of C57-WT mice rose rapidly after irradiation and remained elevated through 20 weeks. TGF-α–/– mice had lower basal LOX expression than C57-WT mice. Both LOX expression and LOX activity were increased after irradiation in all mice but to a lesser degree in TGF-α–/– mice. Treatment of NIH-3T3 fibroblasts with TGF-α resulted in increases in proliferation, collagen production and LOX activity. These studies identify TGF-α as a critical mediator of radiation-induced lung injury and a novel therapeutic target in this setting. Further, these data implicate TGF-α as a mediator of collagen maturation through a TGF-β independent activation of lysyl oxidase.


International Journal of Radiation Oncology Biology Physics | 2016

Truncated Plasminogen Activator Inhibitor-1 Protein Protects From Pulmonary Fibrosis Mediated by Irradiation in a Murine Model.

Eun Joo Chung; Grace McKay-Corkum; Su Chung; Ayla O. White; Bradley T. Scroggins; James B. Mitchell; Mary Jo Mulligan-Kehoe; Deborah Citrin

PURPOSE To determine whether the delivery of recombinant truncated plasminogen activator inhibitor-1 (PAI-1) protein (rPAI-1(23)) would protect from the development of radiation-induced lung injury. METHODS AND MATERIALS C57Bl/6 mice received intraperitoneal injections of rPAI-1(23) (5.4 μg/kg/d) or vehicle for 18 weeks, beginning 2 days before irradiation (IR) (5 daily fractions of 6 Gy). Cohorts of mice were followed for survival (n=8 per treatment) and tissue collection (n=3 per treatment and time point). Fibrosis in lung was assessed with Masson-Trichrome staining and measurement of hydroxyproline content. Senescence was assessed with staining for β-galactosidase activity in lung and primary pneumocytes. RESULTS Hydroxyproline content in irradiated lung was significantly reduced in mice that received rPAI-1(23) compared with mice that received vehicle (IR+vehicle: 84.97 μg/lung; IR+rPAI-1(23): 56.2 μg/lung, P=.001). C57Bl/6 mice exposed to IR+vehicle had dense foci of subpleural fibrosis at 19 weeks, whereas the lungs of mice exposed to IR+rPAI-1(23) were largely devoid of fibrotic foci. Cellular senescence was significantly decreased by rPAI-1(23) treatment in primary pneumocyte cultures and in lung at multiple time points after IR. CONCLUSIONS These studies identify that rPAI-1(23) is capable of preventing radiation-induced fibrosis in murine lungs. These antifibrotic effects are associated with increased fibrin metabolism, enhanced matrix metalloproteinase-3 expression, and reduced senescence in type 2 pneumocytes. Thus, rPAI-1(23) is a novel therapeutic option for radiation-induced fibrosis.


International Journal of Radiation Biology | 2013

Inhibition of radiation-induced skin fibrosis with imatinib.

Jason A. Horton; Eun Joo Chung; Kathryn Hudak; Anastasia L. Sowers; Angela Thetford; Ayla O. White; James B. Mitchell; Deborah Citrin

Abstract Purpose: Dermal fibrosis is a disabling late toxicity of radiotherapy. Several lines of evidence suggest that overactive signaling via the Platelet-derived growth factor receptor-beta (PDGFR-β) and V-abl Abelson murine leukemia viral oncogene homolog 1 (cAbl) may be etiologic factors in the development of radiation-induced fibrosis. We tested the hypothesis that imatinib, a clinically available inhibitor of PDGFR-β, Mast/stem cell growth factor receptor (c-kit) and cAbl, would reduce the severity of dermal fibrosis in a murine model. Materials and methods: The right hind legs of female C3H/HeN mice were exposed to 35 Gy of X-rays. Cohorts of mice were maintained on chow formulated with imatinib 0.5 mg/g or control chow for the duration of the experiment. Bilateral hind limb extension was measured serially to assess fibrotic contracture. Immunohistochemistry and biochemical assays were used to evaluate the levels of collagen and cytokines implicated in radiation-induced fibrosis. Results: Imatinib treatment significantly reduced hind limb contracture and dermal thickness after irradiation. Immunohistochemical studies demonstrated a substantial reduction in PDGFR-β phosphorylation. We also observed reduced Transforming Growth factor-β (TGF-β) and collagen expression in irradiated skin of imatinib-treated mice, suggesting that imatinib may suppress the fibrotic process by interrupting cross-talk between these pathways. Conclusions: Taken together, these results support that imatinib may be a useful agent in the prevention and treatment of radiation-induced dermal fibrosis.


Scientific Reports | 2016

IL-13 is a therapeutic target in radiation lung injury

Su I. Chung; Jason A. Horton; Thirumalai R. Ramalingam; Ayla O. White; Eun Joo Chung; Kathryn Hudak; Bradley T. Scroggins; Joseph R. Arron; Thomas A. Wynn; Deborah Citrin

Pulmonary fibrosis is a potentially lethal late adverse event of thoracic irradiation. Prior research indicates that unrestrained TGF-β1 and/or type 2 cytokine-driven immune responses promote fibrosis following radiation injury, but the full spectrum of factors governing this pathology remains unclear. Interleukin 13 (IL-13) is a key factor in fibrotic disease associated with helminth infection, but it is unclear whether it plays a similar role in radiation-induced lung fibrosis. Using a mouse model, we tested the hypothesis that IL-13 drives the progression of radiation-induced pulmonary fibrosis. Irradiated lungs from wild-type c57BL/6NcR mice accumulated alternatively-activated macrophages, displayed elevated levels of IL-13, and extensive fibrosis, whereas IL-13 deficient mice were resistant to these changes. Furthermore, plasma from irradiated wild-type mice showed a transient increase in the IL-13 saturated fraction of the circulating decoy receptor IL-13Rα2. Finally, we determined that therapeutic neutralization of IL-13, during the period of IL-13Rα2 saturation was sufficient to protect mice from lung fibrosis. Taken together, our results demonstrate that IL-13 is a major regulator of radiation-induced lung injury and demonstrates that strategies focusing on IL-13 may be useful in screening for timely delivery of anti-IL-13 therapeutics.


Journal of Clinical Investigation | 2013

Peptidases released by necrotic cells control CD8+ T cell cross-priming

Jaba Gamrekelashvili; Tamar Kapanadze; Miaojun Han; Josef Wissing; Chi Ma; Lothar Jaensch; Michael P. Manns; Todd D. Armstrong; Elizabeth M. Jaffee; Ayla O. White; Deborah Citrin; Firouzeh Korangy; Tim F. Greten

Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells.


Clinical Cancer Research | 2018

Hyperpolarized [1-13C]-Pyruvate Magnetic Resonance Spectroscopic Imaging of Prostate Cancer In Vivo Predicts Efficacy of Targeting the Warburg Effect

Bradley T. Scroggins; Masayuki Matsuo; Ayla O. White; Keita Saito; Jeeva Munasinghe; Carole Sourbier; Kazutoshi Yamamoto; Vivian Diaz; Yoichi Takakusagi; Kazuhiro Ichikawa; James B. Mitchell; Murali C. Krishna; Deborah Citrin

Purpose: To evaluate the potential of hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopic imaging (MRSI) of prostate cancer as a predictive biomarker for targeting the Warburg effect. Experimental Design: Two human prostate cancer cell lines (DU145 and PC3) were grown as xenografts. The conversion of pyruvate to lactate in xenografts was measured with hyperpolarized [1-13C]-pyruvate MRSI after systemic delivery of [1-13C] pyruvic acid. Steady-state metabolomic analysis of xenograft tumors was performed with mass spectrometry and steady-state lactate concentrations were measured with proton (1H) MRS. Perfusion and oxygenation of xenografts were measured with electron paramagnetic resonance (EPR) imaging with OX063. Tumor growth was assessed after lactate dehydrogenase (LDH) inhibition with FX-11 (42 μg/mouse/day for 5 days × 2 weekly cycles). Lactate production, pyruvate uptake, extracellular acidification rates, and oxygen consumption of the prostate cancer cell lines were analyzed in vitro. LDH activity was assessed in tumor homogenates. Results: DU145 tumors demonstrated an enhanced conversion of pyruvate to lactate with hyperpolarized [1-13C]-pyruvate MRSI compared with PC3 and a corresponding greater sensitivity to LDH inhibition. No difference was observed between PC3 and DU145 xenografts in steady-state measures of pyruvate fermentation, oxygenation, or perfusion. The two cell lines exhibited similar sensitivity to FX-11 in vitro. LDH activity correlated to FX-11 sensitivity. Conclusions: Hyperpolarized [1-13C]-pyruvate MRSI of prostate cancer predicts efficacy of targeting the Warburg effect. Clin Cancer Res; 24(13); 3137–48. ©2018 AACR.

Collaboration


Dive into the Ayla O. White's collaboration.

Top Co-Authors

Avatar

Deborah Citrin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eun Joo Chung

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jason A. Horton

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Kathryn Hudak

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James B. Mitchell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Su I. Chung

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anastasia L. Sowers

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Angela Thetford

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carole Sourbier

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge