Ayman Nafady
King Saud University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ayman Nafady.
Inorganic Chemistry | 2009
Jannie C. Swarts; Ayman Nafady; John H. Roudebush; Sabrina Trupia
The electrochemical oxidation of ruthenocene, RuCp(2) (Cp = eta(5)-C(5)H(5)), 1, has been studied in dichloromethane using a supporting electrolyte containing either the [B(C(6)F(5))(4)](-) (TFAB) or the [B(C(6)H(3)(CF(3))(2))(4)](-) (BArF(24)) counteranion. A quasi-Nernstian process was observed in both cases, with E(1/2) values of 0.41 and 0.57 V vs FeCp(2) in the respective electrolyte media. The ruthenocenium ion 1(+) equilibrates with a metal-metal bonded dimer [Ru(2)Cp(4)](2+), 2(2+), that is increasingly preferred at low temperatures. Dimerization equilibrium constants determined by digital simulation of cyclic voltammetry (CV) curves were in the range of 10(2)-10(4) M(-1) at temperatures of 256 to 298 K. Near room temperature, and particularly when BArF(24) is the counteranion, the dinuclear species [Ru(2)Cp(2)(sigma:eta(5)-C(5)H(4))(2)] (2+), 3(2+), in which each metal is sigma-bonded to a cyclopentadienyl ring, was the preferred electrolytic oxidation product. Cathodic reduction of 3(2+) regenerated ruthenocene. The two dinuclear products, 2(2+) and 3(2+), were characterized by (1)H NMR spectroscopy on anodically electrolyzed solutions of 1 at low temperatures in CD(2)Cl(2)/[NBu(4)][BArF(24)]. The variable temperature NMR behavior of these solutions showed that 3(2+) and 2(2+) take part in a thermal equilibrium, the latter being dominant at the lowest temperatures. Ruthenocene hydride, [1-H](+), was also identified as being present in the electrolysis solutions. The oxidation of ruthenocene is shown to be an inherent one-electron process, giving a ruthenocenium ion which is highly susceptible to reactions that allow it to regain an 18-electron configuration. In a dry non-donor solvent, and in the absence of nucleophiles, this electronic configuration is attained by self-reactions involving formation of Ru-Ru or Ru-C bonds. The present data offer a mechanistic explanation for the previously described results on the chemical oxidation of osmocene (Droege, M.W.; Harman, W.D.; Taube, H. Inorg. Chem. 1987, 26, 1309) and are relevant to the manner in which sigma:eta(5)-C(5)H(4)-complexes of other second and third-row metals are formed.
ACS Applied Materials & Interfaces | 2015
Sudarsanam Putla; Mohamad Hassan Amin; Benjaram M. Reddy; Ayman Nafady; Khalid A. Al Farhan; Suresh K. Bhargava
Understanding the interface-induced effects of heteronanostructured catalysts remains a significant challenge due to their structural complexity, but it is crucial for developing novel applied catalytic materials. This work reports a systematic characterization and catalytic evaluation of MnOx nanoparticle-dispersed CeO2 nanocubes for two important industrial applications, namely, diesel soot oxidation and continuous-flow benzylamine oxidation. The X-ray diffraction and Raman studies reveal an unusual lattice expansion in CeO2 after the addition of MnOx. This interesting observation is due to conversion of smaller sized Ce(4+) (0.097 nm) to larger sized Ce(3+) (0.114 nm) in cerium oxide led by the strong interaction between MnOx and CeO2 at their interface. Another striking observation noticed from transmission electron microscopy, high angle annular dark-field scanning transmission electron microscopy, and electron energy loss spectroscopy studies is that the MnOx species are well-dispersed along the edges of the CeO2 nanocubes. This remarkable decoration leads to an enhanced reducible nature of the cerium oxide at the MnOx/CeO2 interface. It was found that MnOx/CeO2 heteronanostructures efficiently catalyze soot oxidation at lower temperatures (50% soot conversion, T50 ∼660 K) compared with that of bare CeO2 nanocubes (T50 ∼723 K). Importantly, the MnOx/CeO2 heteronanostructures exhibit a noticeable steady performance in the oxidation of benzylamine with a high selectivity of the dibenzylimine product (∼94-98%) compared with that of CeO2 nanocubes (∼69-91%). The existence of a strong synergistic effect at the interface sites between the CeO2 and MnOx components is a key factor for outstanding catalytic efficiency of the MnOx/CeO2 heteronanostructures.
Journal of the American Chemical Society | 2008
Daesung Chong; Derek R. Laws; Ayman Nafady; Paulo J. Costa; Arnold L. Rheingold; Maria José Calhorda
The anodic electrochemical oxidations of ReCp(CO)3 (1, Cp = eta(5)-C5H5), Re(eta(5)-C5H4NH2)(CO)3 (2), and ReCp*(CO)3 (3, Cp* = eta(5)-C5Me5), have been studied in CH2Cl2 containing [NBu4][TFAB] (TFAB = [B(C6F5)4]-) as supporting electrolyte. One-electron oxidations were observed with E(1/2) = 1.16, 0.79, and 0.91 V vs ferrocene for 1-3, respectively. In each case, rapid dimerization of the radical cation gave the dimer dication, [Re2Cp(gamma)2(CO)6]2+ (where Cp(gamma) represents a generic cyclopentadienyl ligand), which may be itself reduced cathodically back to the original 18-electron neutral complex ReCp(gamma)(CO)3. DFT calculations show that the SOMO of 1+ is highly Re-based and hybridized to point away from the metal, thereby facilitating the dimerization process and other reactions of the Re(II) center. The dimers, isolated in all three cases, have long metal-metal bonds that are unsupported by bridging ligands, the bond lengths being calculated as 3.229 A for [Re2Cp2(CO)6]2+ (1(2)2+) and measured as 3.1097 A for [Re2(C5H4NH2)2(CO)6]2+ (2(2)2+) by X-ray crystallography on [Re2(C5H4NH2)2(CO)6][TFAB]2. The monomer/dimer equilibrium constants are between K(dim) = 10(5) M(-1) and 10(7) M(-1) for these systems, so that partial dissociation of the dimers gives a modest amount of the corresponding monomer that is free to undergo radical cation reactions. The radical 1+ slowly abstracts a chlorine atom from dichloromethane to give the 18-electron complex [ReCp(CO)3Cl]+ as a side product. The radical cation 1+ acts as a powerful one-electron oxidant capable of effectively driving outer-sphere electron-transfer reactions with reagents having potentials of up to 0.9 V vs ferrocene.
Langmuir | 2016
Putla Sudarsanam; Brendan Hillary; Baithy Mallesham; Bolla Govinda Rao; Mohamad Hassan Amin; Ayman Nafady; Ali Alsalme; B. Mahipal. Reddy; Suresh K. Bhargava
This work investigates the structure-activity properties of CuOx-decorated CeO2 nanocubes with a meticulous scrutiny on the role of the CuOx/CeO2 nanointerface in the catalytic oxidation of diesel soot, a critical environmental problem all over the world. For this, a systematic characterization of the materials has been undertaken using transmission electron microscopy (TEM), transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDS), high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM), scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS), X-ray diffraction (XRD), Raman, N2 adsorption-desorption, and X-ray photoelectron spectroscopy (XPS) techniques. The TEM images show the formation of nanosized CeO2 cubes (∼25 nm) and CuOx nanoparticles (∼8.5 nm). The TEM-EDS elemental mapping images reveal the uniform decoration of CuOx nanoparticles on CeO2 nanocubes. The XPS and Raman studies show that the decoration of CuOx on CeO2 nanocubes leads to improved structural defects, such as higher concentrations of Ce(3+) ions and abundant oxygen vacancies. It was found that CuOx-decorated CeO2 nanocubes efficiently catalyze soot oxidation at a much lower temperature (T50 = 646 K, temperature at which 50% soot conversion is achieved) compared to that of pristine CeO2 nanocubes (T50 = 725 K) under tight contact conditions. Similarly, a huge 91 K difference in the T50 values of CuOx/CeO2 (T50 = 744 K) and pristine CeO2 (T50 = 835 K) was found in the loose-contact soot oxidation studies. The superior catalytic performance of CuOx-decorated CeO2 nanocubes is mainly attributed to the improved redox efficiency of CeO2 at the nanointerface sites of CuOx-CeO2, as evidenced by Ce M5,4 EELS analysis, supported by XRD, Raman, and XPS studies, a clear proof for the role of nanointerfaces in the performance of heterostructured nanocatalysts.
Talanta | 2014
Razium Ali Soomro; Ayman Nafady; Sirajuddin; Najma Memon; Tufail H. Sherazi; Nazar Hussain Kalwar
This report demonstrates a novel, simple and efficient protocol for the synthesis of copper nanoparticles in aqueous solution using L-cysteine as capping or protecting agent. UV-visible (UV-vis) spectroscopy was employed to monitor the LSPR band of L-cysteine functionalized copper nanoparticles (Cyst-Cu NPs) based on optimizing various reaction parameters. Fourier Transform Infrared (FTIR) spectroscopy provided information about the surface interaction between L-cysteine and Cu NPs. Transmission Electron Microscopy (TEM) confirmed the formation of fine spherical, uniformly distributed Cyst-Cu NPs with average size of 34 ± 2.1 nm. X-ray diffractometry (XRD) illustrated the formation of pure metallic phase crystalline Cyst-Cu NPs. As prepared Cyst-Cu NPs were tested as colorimetric sensor for determining mercuric (Hg(2+)) ions in an aqueous system. Cyst-Cu NPs demonstrated very sensitive and selective colorimetric detection of Hg(2+) ions in the range of 0.5 × 10(-6)-3.5 × 10(-6) mol L(-1) based on decrease in LSPR intensity as monitored by a UV-vis spectrophotometer. The developed sensor is simple, economic compared to those based on precious metal nanoparticles and sensitive to detect Hg(2+) ions with detection limit down to 4.3 × 10(-8) mol L(-1). The sensor developed in this work has a high potential for rapid and on-site detection of Hg(2+) ions. The sensor was successfully applied for assessment of Hg(2+) ions in real water samples collected from various locations of the Sindh River.
Langmuir | 2015
Ahmad Esmaielzadeh Kandjani; Ylias M. Sabri; Selvakannan Periasamy; Nafisa Zohora; Mohamad Hassan Amin; Ayman Nafady; Suresh K. Bhargava
p-Type Cu2O/n-type ZnO core/shell photocatalysts has been demonstrated to be an efficient photocatalyst as a result of their interfacial structure tendency to reduce the recombination rate of photogenerated electron-hole pairs. Monodispersed Cu2O nanocubes were synthesized and functioned as the core, on which ZnO nanoparticles were coated as the shells having varying morphologies. The evenly distributed ZnO decoration as well as assembled nanospheres of ZnO were carried out by changing the molar concentration ratio of Zn/Cu. The results indicate that the photocatalytic performance is initially increased, owing to formation of small ZnO nanoparticles and production of efficient p-n junction heterostructures. However, with increasing Zn concentration, the decorated ZnO nanoparticles tend to form large spherical assemblies resulting in decreased photocatalytic activity due to the interparticle recombination between the agglomerated ZnO nanoparticles. Therefore, photocatalytic activity of Cu2O/ZnO heterostructures can be optimized by controlling the assembly and morphology of the ZnO shell.
Inorganic Chemistry | 2013
Ian A. Gass; Subrata Tewary; Ayman Nafady; Nicholas F. Chilton; Christopher J. Gartshore; Mousa Asadi; David W. Lupton; Boujemaa Moubaraki; Alan M. Bond; John F. Boas; SiXuan Guo; Gopalan Rajaraman; Keith S. Murray
The reaction of [Co(II)(NO3)2]·6H2O with the nitroxide radical, 4-dimethyl-2,2-di(2-pyridyl) oxazolidine-N-oxide (L(•)), produces the mononuclear transition-metal complex [Co(II)(L(•))2](NO3)2 (1), which has been investigated using temperature-dependent magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, electrochemistry, density functional theory (DFT) calculations, and variable-temperature X-ray structure analysis. Magnetic susceptibility measurements and X-ray diffraction (XRD) analysis reveal a central low-spin octahedral Co(2+) ion with both ligands in the neutral radical form (L(•)) forming a linear L(•)···Co(II)···L(•) arrangement. This shows a host of interesting magnetic properties including strong cobalt-radical and radical-radical intramolecular ferromagnetic interactions stabilizing a S = (3)/2 ground state, a thermally induced spin crossover transition above 200 K and field-induced slow magnetic relaxation. This is supported by variable-temperature EPR spectra, which suggest that 1 has a positive D value and nonzero E values, suggesting the possibility of a field-induced transverse anisotropy barrier. DFT calculations support the parallel alignment of the two radical π*NO orbitals with a small orbital overlap leading to radical-radical ferromagnetic interactions while the cobalt-radical interaction is computed to be strong and ferromagnetic. In the high-spin (HS) case, the DFT calculations predict a weak antiferromagnetic cobalt-radical interaction, whereas the radical-radical interaction is computed to be large and ferromagnetic. The monocationic complex [Co(III)(L(-))2](BPh4) (2) is formed by a rare, reductively induced oxidation of the Co center and has been fully characterized by X-ray structure analysis and magnetic measurements revealing a diamagnetic ground state. Electrochemical studies on 1 and 2 revealed common Co-redox intermediates and the proposed mechanism is compared and contrasted with that of the Fe analogues.
Catalysis Science & Technology | 2016
Deshetti Jampaiah; Samuel J. Ippolito; Ylias M. Sabri; James Tardio; Periasamy R. Selvakannan; Ayman Nafady; Benjaram M. Reddy; Suresh K. Bhargava
A series of MnOx/CeO2 (Mn/Ce), MnOx/ZrO2 (Mn/Zr), and MnOx/Ce0.75Zr0.25O2 (Mn/CZ) catalysts prepared by an impregnation method were tested for their ability to catalyse the oxidation of Hg0 at relatively low temperature (423 K). Various characterization techniques, namely, Brunauer–Emmett–Teller (BET) surface area analysis, X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and H2-temperature programmed reduction (H2-TPR) were employed to understand the structural, surface, and redox properties of the prepared catalysts. Specific aspects of the catalysis of Hg0 oxidation that were investigated included the influence of MnOx loading (5, 15, and 25%) and the influence of HCl and O2. Among the catalysts tested, the 15Mn/CZ catalyst achieved the best Hg0 oxidation performance (~83% conversion of Hg0 to Hg2+) in the presence of HCl and O2. The higher activity of the 15Mn/CZ catalyst was most likely due to the presence of more oxygen vacancies, enhanced Mn4+/Mn4+ + Mn3+ + Mn2+ ratio and more surface adsorbed oxygen, which were proved by XRD, BET, Raman, and XPS. H2-TPR results also show that the strong interaction between the Ce0.75Zr0.25O2 support and MnOx improved the redox properties significantly as compared to pure CeO2 and ZrO2 supported MnOx catalysts.
Analytical Chemistry | 2011
Thanh Hai Le; Ayman Nafady; Xiaohu Qu; Lisandra L. Martin; Alan M. Bond
The electrochemistry of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (TCNQF(4)), [TCNQF(4)](•-), and [TCNQF(4)](2-) have been studied in acetonitrile (0.1 M [Bu(4)N][ClO(4)]). Transient and steady-state voltammetric techniques have been utilized to monitor the generation of [TCNQF(4)](•-) and [TCNQF(4)](2-) anions as well as their reactions with trifluoroacetic acid (TFA). In the absence of TFA, the reduction of TCNQF(4) occurs via two, diffusion controlled, chemically and electrochemically reversible, one-electron processes where the reversible formal potentials are 0.31 and -0.22 V vs Ag/Ag(+). Unlike the TCNQ analogues, both [TCNQF(4)](•-) and [TCNQF(4)](2-) are persistent when generated via bulk electrolysis even under aerobic conditions. Voltammetric and UV-vis data revealed that although the parent TCNQF(4) does not react with TFA, the electrochemically generated radical anion and dianion undergo facile protonation to yield [HTCNQF(4)](•), [HTCNQF(4)](-) and H(2)TCNQF(4) respectively. The voltammetry can be simulated to give a complete thermodynamic and kinetic description of the complex, coupled redox and acid-base chemistry. The data indicate dramatically different equilibrium and rate constants for the protonation of [TCNQF(4)](•-) (K(eq) = 3.9 × 10(-6), k(f) = 1.0 × 10(-3) M(-1) s(-1)) and [TCNQF(4)](2-) (K(eq) = 3.0 × 10(3), k(f) = 1.0 × 10(10) M(-1) s(-1)) in the presence of TFA.
Inorganic Chemistry | 2011
Ian A. Gass; Christopher J. Gartshore; David W. Lupton; Boujemaa Moubaraki; Ayman Nafady; Alan M. Bond; John F. Boas; John D. Cashion; Carsten Milsmann; Karl Wieghardt; Keith S. Murray
The reaction of [Fe(II)(BF(4))(2)]·6H(2)O with the nitroxide radical, 4,4-dimethyl-2,2-di(2-pyridyl) oxazolidine-N-oxide (L(•)), produces the mononuclear transition metal complex [Fe(II)(L(•))(2)](BF(4))(2) (1) which has been investigated using temperature dependent susceptibility, Mössbauer spectroscopy, electrochemistry, density functional theory (DFT) calculations, and X-ray structure analysis. Single crystal X-ray diffraction analysis and Mössbauer measurements reveal an octahedral low spin Fe(2+) environment where the pyridyl donors from L(•) coordinate equatorially while the oxygen containing the radical from L(•) coordinates axially forming a linear O(•)··Fe(II)··O(•) arrangement. Magnetic susceptibility measurements show a strong radical-radical intramolecular antiferromagnetic interaction mediated by the diamagnetic Fe(2+) center. This is supported by DFT calculations which show a mutual spatial overlap of 0.24 and a spin density population analysis which highlights the antiparallel spin alignment between the two ligands. Similarly the monocationic complex [Fe(III)(L(-))(2)](BPh(4))·0.5H(2)O (2) has been fully characterized with Fe-ligand and N-O bond length changes in the X-ray structure analysis, magnetic measurements revealing a Curie-like S = 1/2 ground state, electron paramagnetic resonance (EPR) spectra, DFT calculations, and electrochemistry measurements all consistent with assignment of Fe in the (III) state and both ligands in the L(-) form. 2 is formed by a rare, reductively induced oxidation of the Fe center, and all physical data are self-consistent. The electrochemical studies were undertaken for both 1 and 2, thus allowing common Fe-ligand redox intermediates to be identified and the results interpreted in terms of square reaction schemes.