Aymeric Dabrin
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aymeric Dabrin.
Journal of Environmental Monitoring | 2009
Alexandra Coynel; Gérard Blanc; Antoine Marache; Jörg Schäfer; Aymeric Dabrin; Eric Maneux; Cécile Bossy; Matthieu Masson; Gilbert Lavaux
The Riou Mort River watershed (SW France), representative of a heavily polluted, small, heterogeneous watershed, represents a major source for the polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system due to former mining and ore-treatment activities. In order to assess spatial distribution of the metal/metalloid contamination in the watershed, a high resolution hydrological and geochemical monitoring were performed during one year at four permanent observation stations. Additionally, thirty-five stream sediment samples were collected at representative key sites and analyzed for metal/metalloid (Cd, Zn, Cu, Pb, As, Sb, Mo, V, Cr, Co, Ni, Th, U and Hg) concentrations. The particulate concentrations in water and stream sediments show high spatial differences for most of the studied elements suggesting strong anthropogenic and/or lithogenic influences; for stream sediments, the sequence of the highest variability, ranging from 100% to 300%, is the following: Mo < Cu < Hg < As < Sb < Cd < Zn < Pb. Multidimensional statistical analyses combined with metal/metalloid maps generated by GIS tool were used to establish relationships between elements, to identify metal/metalloid sources and localize geochemical anomalies attributed to local geochemical background, urban and industrial activities. Finally, this study presents an approach to assess anthropogenic trace metal inputs within this watershed by combining lithology-dependent geochemical background values, metal/metalloid concentrations in stream sediments and mass balances of element fluxes at four key sites. The strongest anthropogenic contributions to particulate element fluxes are 90-95% for Cd, Zn and Hg in downstream sub-catchments. The localisation of anthropogenic metal/metalloid sources in restricted areas offers a great opportunity to further significantly reduce metal emissions and restore the Lot-Garonne-Gironde fluvial-estuarine ecosystem.
Environmental Science and Pollution Research | 2015
Anne Sophie Lambert; Stéphane Pesce; Arnaud Foulquier; Josiane Gahou; Marina Coquery; Aymeric Dabrin
Pollution-induced community tolerance (PICT) approaches involve comparing tolerance levels of natural communities to a particular contaminant or a contaminant mixture using short-term toxicity tests performed under controlled conditions. However, results from toxicity tests can be modulated by various environmental and experimental conditions, raising questions about their reproducibility and comparability. In this context, the present study aimed to determine the influence of exposure duration, periphyton suspension concentration, and periphyton maturation stage on the measurement of short-term effects of copper on phototrophic periphyton communities. Our results showed the very weak influence of exposure duration in the tested range (2–6xa0h) on toxicity level, whereas periphyton biomass in the tested suspension (in terms of both chlorophyll a concentrations and dry weight), proved a crucial determinant in toxicity assessment. Results also highlighted the potential tolerance increase with the periphyton maturation stage. This parameter conditioned the positive linear relationship between tolerance level and periphyton suspension concentration, leading to an increase in the linear regression slope with the maturation stage. This suggests that such a relationship is probably highly periphyton-dependent. Consequently, to enable data toxicity comparisons, an a priori normalization of the periphyton suspension biomass is necessary, and PICT approaches require the use, as much of possible, of periphyton with similar maturation stage. Finally, the present study clearly shows that a better standardization of PICT approaches could help to improve reproducibility. It could thus facilitate the comparison of tolerance levels measured in the same study (e.g., spatial and/or temporal and/or inter-treatment comparison) as well as the comparison obtained from different experimental and in situ research.
Journal of Hazardous Materials | 2017
Soizic Morin; Anne Sophie Lambert; Elena Rodriguez; Aymeric Dabrin; Marina Coquery; Stéphane Pesce
Biological communities in aquatic environments most commonly face multiple stress, where natural and anthropogenic stressors often act jointly. Their interactions are most easily assessed using short cycle organisms such as periphytic diatoms. In this experiment, we analyzed the combined effects of copper exposure and warming on diatom successions over 6 weeks. Natural biofilm collected in winter was left to grow in mesocosms exposed or unexposed to realistic Cu concentrations at four different temperatures. Separate and joint impacts of the two stressors were determined through structural and functional endpoints. Both temperature and copper influenced the biological responses; their interaction, when significant, was always antagonistic. Diatom communities gradually changed with rising temperature. Under copper exposure, the dominant Planothidium lanceolatum was superseded by Achnanthidium exiguum, which accounted for about 70% relative abundance in the warmest conditions (18-23°C). Tolerance to copper was derived from dose-response curves based on photosynthesis inhibition. Cu-induced community tolerance was always found, but it decreased with warming and time. Biodiversity loss associated with lower Cu tolerance under combined Cu exposure and increasing temperatures evidences the major influence of cumulative stressors on aquatic health. These results highlight the crucial interplay between environmental stressors, which are expected to intensify with climate change.
Environmental Pollution | 2016
Anne Sophie Lambert; Aymeric Dabrin; Soizic Morin; Josiane Gahou; Arnaud Foulquier; Marina Coquery; Stéphane Pesce
Streams located in vineyard areas are highly prone to metal pollution. In a context of global change, aquatic systems are generally subjected to multi-stress conditions due to multiple chemical and/or physical pressures. Among various environmental factors that modulate the ecological effects of toxicants, special attention should be paid to climate change, which is driving an increase in extreme climate events such as sharp temperature rises. In lotic ecosystems, periphyton ensures key ecological functions such as primary production and nutrient cycling. However, although the effects of metals on microbial communities are relatively well known, there is scant data on possible interactions between temperature increase and metal pollution. Here we led a study to evaluate the influence of temperature on the response of phototrophic periphyton to copper (Cu) exposure. Winter communities, collected in a 8 °C river water, were subjected for six weeks to four thermal conditions in microcosms in presence or not of Cu (nominal concentration of 15 μg L(-1)). At the initial river temperature (8 °C), our results confirmed the chronic impact of Cu on periphyton, both in terms of structure (biomass, distribution of algal groups, diatomic composition) and function (photosynthetic efficiency). At higher temperatures (13, 18 and 23 °C), Cu effects were modulated. Indeed, temperature increase reduced Cu effects on algal biomass, algal class proportions, diatom assemblage composition and photosynthetic efficiency. This reduction of Cu effects on periphyton may be related to lower bioaccumulation of Cu and/or to selection of more Cu-tolerant species at higher temperatures.
Science of The Total Environment | 2017
Anne Sophie Lambert; Aymeric Dabrin; Arnaud Foulquier; Soizic Morin; Christophe Rosy; Marina Coquery; Stéphane Pesce
By measuring levels of tolerance to toxicants in microbial communities using functional toxicity tests under controlled conditions, pollution-induced community tolerance (PICT) approaches offer an effect-based tool to assess the ecological risk of chemicals in aquatic systems. However, induced tolerance of exposed microbial communities cannot always be attributed solely to the presence of toxicants as various environmental factors, such as temperature, can also be involved. Several PICT studies have been conducted to assess the effects of copper (Cu) on phototrophic periphyton, but little is known about the influence of temperature on the response of these microbial communities to acute and chronic exposure to Cu. Here, we report on a microcosm approach to assess the effects of two contrasting temperatures (18°C and 28°C) on (i) the baseline level of Cu tolerance in non-Cu-exposed phototrophic periphyton (i.e. effect of temperature on tolerance baseline), (ii) Cu tolerance acquisition by phototrophic periphyton in response to a 3-week chronic exposure to Cu at a nominal concentration of 60μgL-1 (i.e. effect of temperature on PICT selection) and (iii) tolerance measured during short-term toxicity tests (i.e. effect of temperature on PICT detection). The aim was to evaluate how temperature conditions during the different phases of the PICT approaches may modify the causal relationship between chronic Cu exposure and measured Cu tolerance levels. Our results evidence the influence of temperature both on the basal capacity of phototrophic periphyton to tolerate subsequent exposure to Cu (i.e. influence on tolerance baseline) and on its capacity to acquire tolerance following chronic exposure to Cu (i.e. influence on PICT selection). Hence temperature must be considered when using PICT to establish causal links between chronic Cu exposure and effects on phototrophic periphyton.
Science of The Total Environment | 2018
M. Masson; H. Angot; C. Le Bescond; M. Launay; Aymeric Dabrin; C. Miège; J. Le Coz; Marina Coquery
Monitoring hydrophobic contaminants in surface freshwaters requires measuring contaminant concentrations in the particulate fraction (sediment or suspended particulate matter, SPM) of the water column. Particle traps (PTs) have been recently developed to sample SPM as cost-efficient, easy to operate and time-integrative tools. But the representativeness of SPM collected with PTs is not fully understood, notably in terms of grain size distribution and particulate organic carbon (POC) content, which could both skew particulate contaminant concentrations. The aim of this study was to evaluate the representativeness of SPM characteristics (i.e. grain size distribution and POC content) and associated contaminants (i.e. polychlorinated biphenyls, PCBs; mercury, Hg) in samples collected in a large river using PTs for differing hydrological conditions. Samples collected using PTs (nu202f=u202f74) were compared with samples collected during the same time period by continuous flow centrifugation (CFC). The grain size distribution of PT samples shifted with increasing water discharge: the proportion of very fine silts (2-6u202fμm) decreased while that of coarse silts (27-74u202fμm) increased. Regardless of water discharge, POC contents were different likely due to integration by PT of high POC-content phytoplankton blooms or low POC-content flood events. Differences in PCBs and Hg concentrations were usually within the range of analytical uncertainties and could not be related to grain size or POC content shifts. Occasional Hg-enriched inputs may have led to higher Hg concentrations in a few PT samples (nu202f=u202f4) which highlights the time-integrative capacity of the PTs. The differences of annual Hg and PCB fluxes calculated either from PT samples or CFC samples were generally below 20%. Despite some inherent limitations (e.g. grain size distribution bias), our findings suggest that PT sampling is a valuable technique to assess reliable spatial and temporal trends of particulate contaminants such as PCBs and Hg within a river monitoring network.
Frontiers in Microbiology | 2018
Ayanleh Mahamoud Ahmed; Emilie Lyautey; Chloé Bonnineau; Aymeric Dabrin; Stéphane Pesce
In many aquatic ecosystems, sediments are an essential compartment, which supports high levels of specific and functional biodiversity thus contributing to ecological functioning. Sediments are exposed to inputs from ground or surface waters and from surrounding watershed that can lead to the accumulation of toxic and persistent contaminants potentially harmful for benthic sediment-living communities, including microbial assemblages. As benthic microbial communities play crucial roles in ecological processes such as organic matter recycling and biomass production, we performed a 21-day laboratory channel experiment to assess the structural and functional impact of metals on natural microbial communities chronically exposed to sediments spiked with copper (Cu) and/or arsenic (As) alone or mixed at environmentally relevant concentrations (40 mg kg-1 for each metal). Heterotrophic microbial community responses to metals were evaluated both in terms of genetic structure (using ARISA analysis) and functional potential (using exoenzymatic, metabolic and functional genes analyses). Exposure to Cu had rapid marked effects on the structure and most of the functions of the exposed communities. Exposure to As had almost undetectable effects, possibly due to both lack of As bioavailability or toxicity toward the exposed communities. However, when the two metals were combined, certain functional responses suggested a possible interaction between Cu and As toxicity on heterotrophic communities. We also observed temporal dynamics in the functional response of sediment communities to chronic Cu exposure, alone or in mixture, with some functions being resilient and others being impacted throughout the experiment or only after several weeks of exposure. Taken together, these findings reveal that metal contamination of sediment could impact both the genetic structure and the functional potential of chronically exposed microbial communities. Given their functional role in aquatic ecosystems, it poses an ecological risk as it may impact ecosystem functioning.
Frontiers in Microbiology | 2018
Stéphane Pesce; Anne-Sophie Lambert; Soizic Morin; Arnaud Foulquier; Marina Coquery; Aymeric Dabrin
Aquatic ecosystems are generally subjected to multiple perturbations due to simultaneous or successive combinations of various natural and anthropogenic environmental pressures. To better assess and predict the resulting ecological consequences, increasing attention should be given to the accumulation of stresses on freshwater ecosystems and its effects on the vulnerability of aquatic organisms, including microbial communities, which play crucial functional roles. Here we used a microcosm study to assess the influence of an experimental warming on the vulnerability of phototrophic and heterotrophic periphytic communities to acute and chronic copper (Cu) toxicity. Natural periphytic communities were submitted for 4 weeks to three different temperatures (18, 23, and 28°C) in microcosms contaminated (at about 15 μg L-1) or not with Cu. The vulnerability of both phototrophic and heterotrophic microbial communities to subsequent acute Cu stress was then assessed by measuring their levels of sensitivity to Cu from bioassays targeting phototrophic (photosynthetic activity) and heterotrophic (β-glucosidase and leucine aminopeptidase extracellular enzymatic activities) microbial functions. We postulated that both the increase in temperature and the chronic Cu exposure would modify microbial community structure, thus leading to changes in the capacity of phototrophic and heterotrophic communities to tolerate subsequent acute exposure to Cu. Our results demonstrated that the influence of temperature on the vulnerability of phototrophic and heterotrophic microbial communities to Cu toxicity can vary greatly according to function studied. These findings emphasize the importance of considering different functional compartments and different functional descriptors to better assess the vulnerability of periphyton to multiple stresses and predict the risks induced by multiple stressors for ecosystem balance and functioning.
Environmental Pollution | 2008
Soizic Morin; T.T. Duong; Aymeric Dabrin; Alexandra Coynel; O. Herlory; Magalie Baudrimont; François Delmas; Gilles Durrieu; Jörg Schäfer; P. Winterton; Gérard Blanc; Michel Coste
Water Research | 2007
Alexandra Coynel; Jörg Schäfer; Aymeric Dabrin; Naïg Girardot; Gérard Blanc