Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayna Alfadhli is active.

Publication


Featured researches published by Ayna Alfadhli.


Journal of Virology | 2009

Analysis of Human Immunodeficiency Virus Type 1 Matrix Binding to Membranes and Nucleic Acids

Ayna Alfadhli; Amelia Still; Eric Barklis

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein targets HIV-1 precursor Gag (PrGag) proteins to assembly sites at plasma membrane (PM) sites that are enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. MA is myristoylated, which enhances membrane binding, and specifically binds PI(4,5)P2 through headgroup and 2′ acyl chain contacts. MA also binds nucleic acids, although the significance of this association with regard to the viral life cycle is unclear. We have devised a novel MA binding assay and used it to examine MA interactions with membranes and nucleic acids. Our results indicate that cholesterol increases the selectivity of MA for PI(4,5)P2-containing membranes, that PI(4,5)P2 binding tolerates 2′ acyl chain variation, and that the MA myristate enhances membrane binding efficiency but not selectivity. We also observed that soluble PI(4,5)P2 analogues do not compete effectively with PI(4,5)P2-containing liposomes for MA binding but surprisingly do increase nonspecific binding to liposomes. Finally, we have demonstrated that PI(4,5)P2-containing liposomes successfully outcompete nucleic acids for MA binding, whereas other liposomes do not. These results support a model in which RNA binding protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to PM assembly sites.


Journal of Virology | 2001

Hantavirus Nucleocapsid Protein Oligomerization

Ayna Alfadhli; Zac Love; Brian Arvidson; Joshua Seeds; Jessica Willey; Eric Barklis

ABSTRACT Hantaviruses are enveloped, negative-strand RNA viruses which can be lethal to humans, causing either a hemorrhagic fever with renal syndrome or a hantaviral pulmonary syndrome. The viral genomes consist of three RNA segments: the L segment encodes the viral polymerase, the M segment encodes the viral surface glycoproteins G1 and G2, and the S segment encodes the nucleocapsid (N) protein. The N protein is a 420- to 430-residue, 50-kDa protein which appears to direct hantavirus assembly, although mechanisms of N protein oligomerization, RNA encapsidation, budding, and release are poorly understood. We have undertaken a biochemical and genetic analysis of N protein oligomerization. Bacterially expressed N proteins were found by gradient fractionation to associate not only as large multimers or aggregates but also as dimers or trimers. Chemical cross-linking of hantavirus particles yielded N protein cross-link products with molecular masses of 140 to 150 kDa, consistent with the size of an N trimer. We also employed a genetic, yeast two-hybrid method for monitoring N protein interactions. Analyses showed that the C-terminal half of the N protein plus the N-terminal 40 residues permitted association with a full-length N protein fusion. These N-terminal 40 residues of seven different hantavirus strains were predicted to form trimeric coiled coils. Our results suggest that coiled-coil motifs contribute to N protein trimerization and that nucleocapsid protein trimers are hantavirus particle assembly intermediates.


Virology | 2009

HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate.

Ayna Alfadhli; Robin Lid Barklis; Eric Barklis

The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein represents the N-terminal domain of the HIV-1 precursor Gag (PrGag) protein and carries an N-terminal myristate (Myr) group. HIV-1 MA fosters PrGag membrane binding, as well as assembly of envelope (Env) proteins into virus particles, and recent studies have shown that HIV-1 MA preferentially directs virus assembly at plasma membrane sites enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P(2)). To characterize the membrane binding of MA and PrGag proteins, we have examined how Myr-MA proteins, and proteins composed of Myr-MA and its neighbor Gag capsid (CA) protein associate on membranes containing cholesterol and PI[4,5]P(2). Our results indicate that Myr-MA assembles as a hexamer of trimers on such membranes, and imply that MA trimers interconnect CA hexamer rings in immature virus particles. Our observations suggest a model for the organization of PrGag proteins, and for MA-Env protein interactions.


Journal of Molecular Biology | 2011

HIV-1 Matrix Protein Binding to RNA

Ayna Alfadhli; Henry McNett; Seyram Tsagli; Hans Peter Bächinger; David H. Peyton; Eric Barklis

The matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) precursor Gag (PrGag) protein plays multiple roles in the viral replication cycle. One essential role is to target PrGag proteins to their lipid raft-associated phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] assembly sites at the plasma membranes of infected cells. In addition to this role, several reports have implicated nucleic acid binding properties to retroviral MAs. Evidence indicates that RNA binding enhances the binding specificity of MA to PI(4,5)P(2)-containing membranes and supports a hypothesis in which RNA binding to MA acts as a chaperone that protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to plasma membrane assembly sites. To gain a better understanding of HIV-1 MA-RNA interactions, we have analyzed the interaction of HIV MA with RNA ligands that were selected previously for their high affinities to MA. Binding interactions were characterized via bead binding, fluorescence anisotropy, gel shift, and analytical ultracentrifugation methods. Moreover, MA residues that are involved in RNA binding were identified from NMR chemical shift data. Our results indicate that the MA RNA and PI(4,5)P(2) binding sites overlap and suggest models for Gag-membrane and Gag-RNA interactions and for the HIV assembly pathway.


Journal of Virology | 2007

Human Immunodeficiency Virus Type 1 Matrix Protein Assembles on Membranes as a Hexamer

Ayna Alfadhli; Doug Huseby; Eliot Kapit; Dalbinder Colman; Eric Barklis

ABSTRACT The membrane-binding matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) structural precursor Gag (PrGag) protein oligomerizes in solution as a trimer and crystallizes in three dimensions as a trimer unit. A number of models have been proposed to explain how MA trimers might align with respect to PrGag capsid (CA) N-terminal domains (NTDs), which assemble hexagonal lattices. We have examined the binding of naturally myristoylated HIV-1 matrix (MyrMA) and matrix plus capsid (MyrMACA) proteins on membranes in vitro. Unexpectedly, MyrMA and MyrMACA proteins both assembled hexagonal cage lattices on phosphatidylserine-cholesterol membranes. Membrane-bound MyrMA proteins did not organize into trimer units but, rather, organized into hexamer rings. Our results yield a model in which MA domains stack directly above NTD hexamers in immature particles, and they have implications for HIV assembly and interactions between MA and the viral membrane glycoproteins.


Journal of Virology | 2005

Analysis of Human Immunodeficiency Virus Type 1 Gag Dimerization-Induced Assembly

Ayna Alfadhli; Tenzin Choesang Dhenub; Amelia Still; Eric Barklis

ABSTRACT The nucleocapsid (NC) domains of retrovirus precursor Gag (PrGag) proteins play an essential role in virus assembly. Evidence suggests that NC binding to viral RNA promotes dimerization of PrGag capsid (CA) domains, which triggers assembly of CA N-terminal domains (NTDs) into hexamer rings that are interconnected by CA C-terminal domains. To examine the influence of dimerization on human immunodeficiency virus type 1 (HIV-1) Gag protein assembly in vitro, we analyzed the assembly properties of Gag proteins in which NC domains were replaced with cysteine residues that could be linked via chemical treatment. In accordance with the model that Gag protein pairing triggers assembly, we found that cysteine cross-linking or oxidation reagents induced the assembly of virus-like particles. However, efficient assembly also was observed to be temperature dependent or required the tethering of NTDs. Our results suggest a multistep pathway for HIV-1 Gag protein assembly. In the first step, Gag protein pairing through NC-RNA interactions or C-terminal cysteine linkage fosters dimerization. Next, a conformational change converts assembly-restricted dimers or small oligomers into assembly-competent ones. At the final stage, final particle assembly occurs, possibly through a set of larger intermediates.


Journal of Molecular Biology | 2009

Characterization of the in vitro HIV-1 capsid assembly pathway.

Eric Barklis; Ayna Alfadhli; Carolyn McQuaw; Suraj Yalamuri; Amelia Still; Robin Lid Barklis; Ben Kukull; Claudia S. López

During the morphogenesis of mature human immunodeficiency virus-1 cores, viral capsid proteins assemble conical or tubular shells around viral ribonucleoprotein complexes. This assembly step is mimicked in vitro through reactions in which capsid proteins oligomerize to form long tubes, and this process can be modeled as consisting of a slow nucleation period, followed by a rapid phase of tube growth. We have developed a novel fluorescence microscopy approach to monitor in vitro assembly reactions and have employed it, along with electron microscopy analysis, to characterize the assembly process. Our results indicate that temperature, salt concentration, and pH changes have differential effects on tube nucleation and growth steps. We also demonstrate that assembly can be unidirectional or bidirectional, that growth can be capped, and that proteins can assemble onto the surfaces of tubes, yielding multiwalled or nested structures. Finally, experiments show that a peptide inhibitor of in vitro assembly also can dismantle preexisting tubes, suggesting that such reagents may possess antiviral effects against both viral assembly and uncoating. Our investigations help establish a basis for understanding the mechanism of mature human immunodeficiency virus-1 core assembly and avenues for antiviral inhibition.


Frontiers in Microbiology | 2014

The roles of lipids and nucleic acids in HIV-1 assembly.

Ayna Alfadhli; Eric Barklis

During HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane (PM) assembly sites, where they are triggered to oligomerize and bud from cells as immature virus particles. The delivery and triggering processes are coordinated by the PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2) is mediated by the MA domain, which also has been shown to bind both RNA and DNA. Evidence suggests that the nucleic-acid-binding function of MA serves to inhibit PrGag binding to inappropriate intracellular membranes, prior to delivery to the PM. At the PM, MA domains putatively trade RNA ligands for PI(4,5)P2 ligands, fostering high-affinity membrane binding. Triggering of oligomerization, budding, and virus particle release results when NC domains on adjacent PrGag proteins bind to viral RNA, leading to capsid (CA) domain oligomerization. This process leads to the assembly of immature virus shells in which hexamers of membrane-bound MA trimers appear to organize above interlinked CA hexamers. Here, we review the functions of retroviral MA proteins, with an emphasis on the nucleic-acid-binding capability of the HIV-1 MA protein, and its effects on membrane binding.


Journal of Biological Chemistry | 2013

Analysis of Small Molecule Ligands Targeting the HIV-1 Matrix Protein-RNA Binding Site

Ayna Alfadhli; Henry McNett; Jacob Eccles; Seyram Tsagli; Colleen Noviello; Rachel Sloan; Claudia S. López; David H. Peyton; Eric Barklis

Background: The HIV-1 matrix protein (MA) binds both RNA and phospholipids. Results: Ligands that compete with RNA for binding to MA were identified and characterized. Conclusion: Thiadiazolanes bind to residues in the HIV-1 MA β-II-V cleft that mediates RNA and phospholipid binding to MA. Significance: These investigations provide new insights into MA-ligand binding and antiviral design. The matrix domain (MA) of the HIV-1 precursor Gag (PrGag) protein directs PrGag proteins to assembly sites at the plasma membrane by virtue of its affinity to the phospholipid, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). MA also binds to RNA at a site that overlaps its PI(4,5)P2 site, suggesting that RNA binding may protect MA from associating with inappropriate cellular membranes prior to PrGag delivery to the PM. Based on this, we have developed an assay in which small molecule competitors to MA-RNA binding can be characterized, with the assumption that such compounds might interfere with essential MA functions and help elucidate additional features of MA binding. Following this approach, we have identified four compounds, including three thiadiazolanes, that compete with RNA for MA binding. We also have identified MA residues involved in thiadiazolane binding and found that they overlap the MA PI(4,5)P2 and RNA sites. Cell culture studies demonstrated that thiadiazolanes inhibit HIV-1 replication but are associated with significant levels of toxicity. Nevertheless, these observations provide new insights into MA binding and pave the way for the development of antivirals that target the HIV-1 matrix domain.


Antimicrobial Agents and Chemotherapy | 2007

Sultam Thiourea Inhibition of West Nile Virus

Eric Barklis; Amelia Still; Mohammad I. Sabri; Alec J. Hirsch; Janko Nikolich-Zugich; James D. Brien; Tenzin Choesang Dhenub; Isabel Scholz; Ayna Alfadhli

ABSTRACT We have identified sultam thioureas as novel inhibitors of West Nile virus (WNV) replication. One such compound inhibited WNV, with a 50% effective concentration of 0.7 μM, and reduced reporter expression from cells that harbored a WNV-based replicon. Our results demonstrate that sultam thioureas can block a postentry, preassembly step of WNV replication.

Collaboration


Dive into the Ayna Alfadhli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David H. Peyton

Portland State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Peter Bächinger

Shriners Hospitals for Children

View shared research outputs
Researchain Logo
Decentralizing Knowledge