Ayumi Yamada
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ayumi Yamada.
Nature | 1999
Chikahide Masutani; Rika Kusumoto; Ayumi Yamada; Naoshi Dohmae; Masayuki Yokoi; Mayumi Yuasa; Marito Araki; Shigenori Iwai; Koji Takio; Fumio Hanaoka
Xeroderma pigmentosum variant (XP-V) is an inherited disorder which is associated with increased incidence of sunlight-induced skin cancers. Unlike other xeroderma pigmentosum cells (belonging to groups XP-A to XP-G), XP-V cells carry out normal nucleotide-excision repair processes but are defective in their replication of ultraviolet-damaged DNA,. It has been suspected for some time that the XPV gene encodes a protein that is involved in trans-lesion DNA synthesis, but the gene product has never been isolated. Using an improved cell-free assay for trans-lesion DNA synthesis, we have recently isolated a DNA polymerase from HeLa cells that continues replication on damaged DNA by bypassing ultraviolet-induced thymine dimers in XP-V cell extracts. Here we show that this polymerase is a human homologue of the yeast Rad30 protein, recently identified as DNA polymerase η (ref. 4). This polymerase and yeast Rad30 are members of a family of damage-bypass replication proteins which comprises the Escherichia coli proteins UmuC and DinB and the yeast Rev1 protein. We found that all XP-V cells examined carry mutations in their DNA polymerase η gene. Recombinant human DNA polymerase η corrects the inability of XP-V cell extracts to carry out DNA replication by bypassing thymine dimers on damaged DNA. Together, these results indicate that DNA polymerase η could be the XPV gene product.
The EMBO Journal | 1999
Chikahide Masutani; Marito Araki; Ayumi Yamada; Rika Kusumoto; Tomokazu Nogimori; Takafumi Maekawa; Shigenori Iwai; Fumio Hanaoka
Xeroderma pigmentosum variant (XP‐V) represents one of the most common forms of this cancer‐prone DNA repair syndrome. Unlike classical XP cells, XP‐V cells are normal in nucleotide excision repair but defective in post‐replication repair. The precise molecular defect in XP‐V is currently unknown, but it appears to be a protein involved in translesion synthesis. Here we established a sensitive assay system using an SV40 origin‐based plasmid to detect XP‐V complementation activity. Using this system, we isolated a protein from HeLa cells capable of complementing the defects in XP‐V cell extracts. The protein displays novel DNA polymerase activity which replicates cyclobutane pyrimidine dimer‐containing DNA templates. The XPV polymerase activity was dependent on MgCl2, sensitive to NEM, moderately sensitive to KCl, resistant to both aphidicolin and ddTTP, and not stimulated by PCNA. In glycerol density gradients, the activity co‐sedimented with a 54 kDa polypeptide at 3.5S, indicating that the monomeric form of this polypeptide was responsible for the activity. The protein factor corrected the translesion defects of extracts from three XPV cell strains. Bypass DNA synthesis by the XP‐V polymerase occurred only in the presence of dATP, indicating that it can incorporate only dATP to bypass a di‐thymine lesion.
Molecular and Cellular Biology | 1997
Chikahide Masutani; Marito Araki; Kaoru Sugasawa; P.J. van der Spek; Ayumi Yamada; Akio Uchida; Takafumi Maekawa; D. Bootsma; Jan H.J. Hoeijmakers; Fumio Hanaoka
hHR23B was originally isolated as a component of a protein complex that specifically complements nucleotide excision repair (NER) defects of xeroderma pigmentosum group C cell extracts in vitro and was identified as one of two human homologs of the Saccharomyces cerevisiae NER gene product Rad23. Recombinant hHR23B has previously been shown to significantly stimulate the NER activity of recombinant human XPC protein (rhXPC). In this study we identify and functionally characterize the XPC-binding domain of hHR23B protein. We prepared various internal as well as terminal deletion products of hHR23B protein in a His-tagged form and examined their binding with rhXPC by using nickel-chelating Sepharose. We demonstrate that a domain covering 56 amino acids of hHR23B is required for binding to rhXPC as well as for stimulation of in vitro NER reactions. Interestingly, a small polypeptide corresponding to the XPC-binding domain is sufficient to exert stimulation of XPC NER activity. Comparison with known crystal structures and analysis with secondary structure programs provided strong indications that the binding domain has a predominantly amphipathic alpha-helical character, consistent with evidence that the affinity with XPC is based on hydrophobic interactions. Our work shows that binding to XPC alone is required and sufficient for the role of hHR23B in in vitro NER but does not rule out the possibility that the protein has additional functions in vivo.
Molecular and Cellular Biology | 2006
Tsuyoshi Ohkumo; Yuji Kondo; Masayuki Yokoi; Tetsuya Tsukamoto; Ayumi Yamada; Taiki Sugimoto; Rie Kanao; Yujiro Higashi; Hisato Kondoh; Masae Tatematsu; Chikahide Masutani; Fumio Hanaoka
ABSTRACT DNA polymerase η (Pol η) is the product of the Polh gene, which is responsible for the group variant of xeroderma pigmentosum, a rare inherited recessive disease which is characterized by susceptibility to sunlight-induced skin cancer. We recently reported in a study of Polh mutant mice that Pol η is involved in the somatic hypermutation of immunoglobulin genes, but the cancer predisposition of Polh−/− mice has not been examined until very recently. Another translesion synthesis polymerase, Pol ι, a Pol η paralog encoded by the Poli gene, is naturally deficient in the 129 mouse strain, and the function of Pol ι is enigmatic. Here, we generated Polh Poli double-deficient mice and compared the tumor susceptibility of them with Polh- or Poli-deficient animals under the same genetic background. While Pol ι deficiency does not influence the UV sensitivity of mouse fibroblasts irrespective of Polh genotype, Polh Poli double-deficient mice show slightly earlier onset of skin tumor formation. Intriguingly, histological diagnosis after chronic treatment with UV light reveals that Pol ι deficiency leads to the formation of mesenchymal tumors, such as sarcomas, that are not observed in Polh−/− mice. These results suggest the involvement of the Pol η and Pol ι proteins in UV-induced skin carcinogenesis.
Nucleic Acids Research | 2000
Ayumi Yamada; Chikahide Masutani; Shigenori Iwai; Fumio Hanaoka
Defects in the human gene XPV result in the variant form of the genetic disease xeroderma pigmentosum (XP-V). XPV encodes DNA polymerase eta, a novel DNA polymerase that belongs to the UmuC/DinB/Rad30 superfamily. This polymerase catalyzes the efficient and accurate translesion synthesis of DNA past cis-syn cyclobutane di-thymine lesions. In this report we present the cDNA sequence and expression profiles of the mouse XPV gene and demonstrate its ability to complement defective DNA synthesis in XP-V cells. The mouse XPV protein shares 80.3% amino acid identity and 86.9% similarity with the human XPV protein. The recombinant mouse XPV protein corrected the inability of XP-V cell extracts to carry out DNA replication, by bypassing thymine dimers on template DNA. Transfection of the mouse or human XPV cDNA into human XP-V cells corrected UV sensitivity. Northern blot analysis revealed that the mouse XPV gene is expressed ubiquitously, but at a higher level in testis, liver, skin and thymus compared to other tissues. Although the mouse XPV gene was not induced by UV irradiation, its expression was elevated approximately 4-fold during cell proliferation. These results suggest that DNA polymerase eta plays a role in DNA replication, though the enzyme is not essential for viability.
Current Biology | 2007
Qiju Wu; Yanxiang Guo; Ayumi Yamada; Jennifer A. Perry; Michael Z. Wang; Marito Araki; Christopher D. Freel; Jeffrey J. Tung; Wanli Tang; Seth S. Margolis; Peter K. Jackson; Hiroyuki Yamano; Maki Asano; Sally Kornbluth
BACKGROUND Vertebrate oocytes are arrested in metaphase II of meiosis prior to fertilization by cytostatic factor (CSF). CSF enforces a cell-cycle arrest by inhibiting the anaphase-promoting complex (APC), an E3 ubiquitin ligase that targets Cyclin B for degradation. Although Cyclin B synthesis is ongoing during CSF arrest, constant Cyclin B levels are maintained. To achieve this, oocytes allow continuous slow Cyclin B degradation, without eliminating the bulk of Cyclin B, which would induce release from CSF arrest. However, the mechanism that controls this continuous degradation is not understood. RESULTS We report here the molecular details of a negative feedback loop wherein Cyclin B promotes its own destruction through Cdc2/Cyclin B-mediated phosphorylation and inhibition of the APC inhibitor Emi2. Emi2 bound to the core APC, and this binding was disrupted by Cdc2/Cyclin B, without affecting Emi2 protein stability. Cdc2-mediated phosphorylation of Emi2 was antagonized by PP2A, which could bind to Emi2 and promote Emi2-APC interactions. CONCLUSIONS Constant Cyclin B levels are maintained during a CSF arrest through the regulation of Emi2 activity. A balance between Cdc2 and PP2A controls Emi2 phosphorylation, which in turn controls the ability of Emi2 to bind to and inhibit the APC. This balance allows proper maintenance of Cyclin B levels and Cdc2 kinase activity during CSF arrest.
Current Biology | 2008
Jessie Yanxiang Guo; Ayumi Yamada; Taisuke Kajino; Judy Wu; Wanli Tang; Christopher D. Freel; Junjie Feng; B. Nelson Chau; Michael Zhuo Wang; Seth S. Margolis; Hae Yong Yoo; Xiao-Fan Wang; William G. Dunphy; Pablo M. Irusta; J. Marie Hardwick; Sally Kornbluth
BACKGROUND In response to DNA damage, cells undergo either cell-cycle arrest or apoptosis, depending on the extent of damage and the cells capacity for DNA repair. Cell-cycle arrest induced by double-stranded DNA breaks depends on activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell-cycle effectors such as Chk2 and p53 to inhibit cell-cycle progression. ATM is recruited to double-stranded DNA breaks by a complex of sensor proteins, including Mre11/Rad50/Nbs1, resulting in autophosphorylation, monomerization, and activation of ATM kinase. RESULTS In characterizing Aven protein, a previously reported apoptotic inhibitor, we have found that Aven can function as an ATM activator to inhibit G2/M progression. Aven bound to ATM and Aven overexpressed in cycling Xenopus egg extracts prevented mitotic entry and induced phosphorylation of ATM and its substrates. Immunodepletion of endogenous Aven allowed mitotic entry even in the presence of damaged DNA, and RNAi-mediated knockdown of Aven in human cells prevented autophosphorylation of ATM at an activating site (S1981) in response to DNA damage. Interestingly, Aven is also a substrate of the ATM kinase. Mutation of ATM-mediated phosphorylation sites on Aven reduced its ability to activate ATM, suggesting that Aven activation of ATM after DNA damage is enhanced by ATM-mediated Aven phosphorylation. CONCLUSIONS These results identify Aven as a new ATM activator and describe a positive feedback loop operating between Aven and ATM. In aggregate, these findings place Aven, a known apoptotic inhibitor, as a critical transducer of the DNA-damage signal.
Nature Communications | 2011
Katsuhisa Ozaki; Masasuke Ryuda; Ayumi Yamada; Ai Utoguchi; Hiroshi Ishimoto; Delphine Calas; Frédéric Marion-Poll; Teiichi Tanimura; Hiroshi Yoshikawa
Swallowtail butterflies belonging to the family of Papilionidae selectively utilize a limited number of plants from a single or a few families. Female butterflies lay eggs on their host only when they detect specific chemicals through their foreleg chemosensilla while drumming on the leaf surface. Here we show that the butterfly, Papilio xuthus, uses a gustatory receptor specific for synephrine to select its host in oviposition behaviour. We identify a gustatory receptor gene involved in the recognition of an oviposition stimulant, synephrine, from the P. xuthus by a combination of in silico, in vitro and in vivo approaches. The receptor, PxutGr1, responds specifically to synephrine in Sf9 cells. The sensitivity of tarsal taste sensilla to synephrine and the oviposition behaviour in response to synephrine are strongly reduced after injecting double-stranded RNA of PxutGr1 into pupae. These observations indicate that the receptor PxutGr1 represents a key factor in host specialization in P. xuthus.
Insect Biochemistry and Molecular Biology | 2008
Katsuhisa Ozaki; Ai Utoguchi; Ayumi Yamada; Hiroshi Yoshikawa
Chemoreception is a key feature for selection of host plants by phytophagous insects. Female swallowtail butterflies recognize their host plants using chemosensilla present on foreleg tarsi. We constructed a cDNA library of female tarsi and a genome library of Papilio xuthus. We identified 11 chemosensory protein (CSP) genes and three odorant binding proteins (OBP) genes from the cDNA library and eight additional CSP genes from the genome library using the ESTs as probes. A sequence similarity tree of insect CSPs showed that lepidopteran CSPs constructed big branches of the order. Small numbers of CSPs have been identified from the whole genomes of several insect orders which belong to branches separated from those of Lepidoptera. The CSP gene family of Lepidoptera may have diverged in at least two steps, the first on a small scale and the second on a large scale before and after the diversification of insect orders, respectively. Seventeen of 19 CSP genes of P. xuthus clustered in a specific region of the genome, suggesting that they were diversified by gene duplication from a common ancestral gene.
Mutation Research-dna Repair | 2000
Marito Araki; Chikahide Masutani; Takafumi Maekawa; Yoshinori Watanabe; Ayumi Yamada; Rika Kusumoto; Daisuke Sakai; Kaoru Sugasawa; Yoshiaki Ohkuma; Fumio Hanaoka
We previously constructed the cell-free nucleotide excision repair (NER) assay system with UV-irradiated SV40 minichromosomes to analyze the mechanism of NER reaction on chromatin DNA. Here we investigate the factor that acts especially on nucleosomal DNA during the damage excision reaction, and reconstitute the damage excision reaction on SV40 minichromosomes. NER-proficient HeLa whole cell extracts were fractionated, and the amounts of known NER factors involved in the column fractions were determined by immunoblot analyses. The column fractions were quantitatively and systematically replaced by highly purified NER factors. Finally, damage DNA excision reaction on SV40 minichromosomes was reconstituted with six highly purified NER factors, XPA, XPC-HR23B, XPF-ERCC1, XPG, RPA and TFIIH, as those essential for the reaction with naked DNA. Further analysis showed that the damages on chromosomal DNA were excised as the same efficiency as those on naked DNA for short incubation. At longer incubation time, however, the damage excision efficiency on nucleosomal DNA was decreased whereas naked DNA was still vigorously repaired. These observations suggest that although the six purified NER factors have a potential to eliminate the damage DNA from SV40 minichromosomes, the chromatin structure may still have some repressive effects on NER.