Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Azahara C. Martín is active.

Publication


Featured researches published by Azahara C. Martín.


The Plant Cell | 2012

The Ph1 Locus Suppresses Cdk2-Type Activity during Premeiosis and Meiosis in Wheat

Emma Greer; Azahara C. Martín; Ali Pendle; Isabelle Colas; Alexandra M. E. Jones; Graham Moore; Peter Shaw

This article examines the role of cyclin-dependent kinase (Cdk) activity in pairing of homoeologous chromosomes in wheat (Triticum aestivum), finding that the Ph1 locus suppresses Cdk2-type activity, thus affecting replication and histone H1 phosphorylation. Despite possessing multiple sets of related (homoeologous) chromosomes, hexaploid wheat (Triticum aestivum) restricts pairing to just true homologs at meiosis. Deletion of a single major locus, Pairing homoeologous1 (Ph1), allows pairing of homoeologs. How can the same chromosomes be processed as homologs instead of being treated as nonhomologs? Ph1 was recently defined to a cluster of defective cyclin-dependent kinase (Cdk)-like genes showing some similarity to mammalian Cdk2. We reasoned that the cluster might suppress Cdk2-type activity and therefore affect replication and histone H1 phosphorylation. Our study does indeed reveal such effects, suggesting that Cdk2-type phosphorylation has a major role in determining chromosome specificity during meiosis.


Nature Communications | 2014

Licensing MLH1 sites for crossover during meiosis

Azahara C. Martín; Peter Shaw; Dylan Phillips; S. M. Reader; Graham Moore

During meiosis, homologous chromosomes synapse and recombine at sites marked by the binding of the mismatch repair protein MLH1. In hexaploid wheat, the Ph1 locus has a major effect on whether crossover occurs between homologues or between related homoeologues. Here we report that—in wheat–rye hybrids where homologues are absent—Ph1 affects neither the level of synapsis nor the number of MLH1. Thus in the case of wheat–wild relative hybrids, Ph1 must affect whether MLH1 sites are able to progress to crossover. The observed level of synapsis implies that Ph1 functions to promote homologue pairing rather than suppress homoeologue pairing in wheat. Therefore, Ph1 stabilises polyploidy in wheat by both promoting homologue pairing and preventing MLH1 sites from becoming crossovers on paired homoeologues during meiosis.


Molecular Breeding | 2009

Chromosome engineering in wheat to restore male fertility in the msH1 CMS system

Azahara C. Martín; Sergio G. Atienza; M. C. Ramírez; Francisco Barro; Antonio Martín

Pollen fertility restoration of the CMS phenotype caused by H. chilense cytoplasm in wheat was associated with the addition of chromosome 6HchS from H. chilense accession H1. In order to develop an euploid restored line, different genomic combinations substituting the 6HchS arm for another homoeologous chromosome in wheat were evaluated, with the conclusion that the optimal combination was the translocation T6HchS·6DL. The double translocation T6HchS·6DL in H. chilense cytoplasm was obtained. This line is fertile and stable under different environmental conditions. However, a single dose of the T6HchS·6DL translocation is insufficient for fertility restoration when chromosome 6D is also present. Restoration in the msH1 system is promoted by interaction between two or more genes, and in addition to the restorer of fertility (Rf) located on chromosome 6HchS, one or more inhibitor of fertility (Fi) genes may be present in chromosome 6DL.


Molecular Breeding | 2017

Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids

María-Dolores Rey; Azahara C. Martín; Janet Higgins; David Swarbreck; Cristobal Uauy; Peter Shaw; Graham Moore

Despite possessing related ancestral genomes, hexaploid wheat behaves as a diploid during meiosis. The wheat Ph1 locus promotes accurate synapsis and crossover of homologous chromosomes. Interspecific hybrids between wheat and wild relatives are exploited by breeders to introgress important traits from wild relatives into wheat, although in hybrids between hexaploid wheat and wild relatives, which possess only homoeologues, crossovers do not take place during meiosis at metaphase I. However, in hybrids between Ph1 deletion mutants and wild relatives, crossovers do take place. A single Ph1 deletion (ph1b) mutant has been exploited for the last 40xa0years for this activity. We show here that chemically induced mutant lines, selected for a mutation in TaZIP4-B2 within the Ph1 locus, exhibit high levels of homoeologous crossovers when crossed with wild relatives. Tazip4-B2 mutant lines may be more stable over multiple generations, as multivalents causing accumulation of chromosome translocations are less frequent. Exploitation of such Tazip4-B2 mutants, rather than mutants with whole Ph1 locus deletions, may therefore improve introgression of wild relative chromosome segments into wheat.


Chromosoma | 2017

Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover

Azahara C. Martín; María-Dolores Rey; Peter Shaw; Graham Moore

Allopolyploids must possess a mechanism for facilitating synapsis and crossover (CO) between homologues, in preference to homoeologues (related chromosomes), to ensure successful meiosis. In hexaploid wheat, the Ph1 locus has a major effect on the control of these processes. Studying a wheat mutant lacking Ph1 provides an opportunity to explore the underlying mechanisms. Recently, it was proposed that Ph1 stabilises wheat during meiosis, both by promoting homologue synapsis during early meiosis and preventing MLH1 sites on synapsed homoeologues from becoming COs later in meiosis. Here, we explore these two effects and demonstrate firstly that whether or not Ph1 is present, synapsis between homoeologues does not take place during the telomere bouquet stage, with only homologous synapsis taking place during this stage. Furthermore, in wheat lacking Ph1, overall synapsis is delayed with respect to the telomere bouquet, with more synapsis occurring after the bouquet stage, when homoeologous synapsis is also possible. Secondly, we show that in the absence of Ph1, we can increase the number of MLH1 sites progressing to COs by altering environmental growing conditions; we show that higher nutrient levels in the soil or lower temperatures increase the level of both homologue and homoeologue COs. These observations suggest opportunities to improve the exploitation of the Ph1 wheat mutant in breeding programmes.


Genome | 2007

Introgression of wheat chromosome 2D or 5D into tritordeum leads to free-threshing habit

Atienza Sg; Azahara C. Martín; Martín A

Hexaploid tritordeum is the amphiploid derived from the cross between the diploid wild barley Hordeum chilense and durum wheat. The non-free-threshing habit is a constraint to this species becoming a new crop. Three tritordeum lines (HT374, HT376, and HT382) showing the free-threshing habit were selected from crosses between tritordeum and bread wheat. All three lines were euploids, as revealed by mitotic chromosome counting. Genomic in situ hybridization analysis made it possible to distinguish differences among these lines. While the line HT382 carries only 10 chromosomes from H. chilense, the lines HT374 and HT376 have 12. These results suggest that HT382 is a double chromosome substitution line between H. chilense and the wheat D genome, while HT374 and HT376 each have one pair of H. chilense (Hch) chromosomes substituted by wheat D chromosomes. Molecular characterization revealed that HT382 is a 1D/(1Hch), 2D/(2Hch) chromosome substitution line, whereas HT374 and HT376 have 5D/(5Hch) substitutions. On the basis of previous knowledge, it seems that the absence of chromosome 2Hch or 5Hch is more important for producing the free-threshing habit than the presence of chromosome 2D or 5D, while chromosome 1Hch seems to be unrelated to the trait. These free-threshing tritordeum lines constitute an important advance in the tritordeum breeding program.


PLOS Computational Biology | 2012

Quantitative Dynamics of Telomere Bouquet Formation

David M. Richards; Emma Greer; Azahara C. Martín; Graham Moore; Peter Shaw; Martin Howard

The mechanism by which homologous chromosomes pair during meiosis, as a prelude to recombination, has long been mysterious. At meiosis, the telomeres in many organisms attach to the nuclear envelope and move together to form the telomere bouquet, perhaps to facilitate the homologous search. It is believed that diffusion alone is not sufficient to account for the formation of the bouquet, and that some directed movement is also required. Here we consider the formation of the telomere bouquet in a wheat-rye hybrid both experimentally and using mathematical modelling. The large size of the wheat nucleus and wheats commercial importance make chromosomal pairing in wheat a particularly interesting and important process, which may well shed light on pairing in other organisms. We show that, prior to bouquet formation, sister chromatid telomeres are always attached to a hemisphere of the nuclear membrane and tend to associate in pairs. We study a mutant lacking the Ph1 locus, a locus ensuring correct homologous chromosome pairing, and discover that bouquet formation is delayed in the wild type compared to the mutant. Further, we develop a mathematical model of bouquet formation involving diffusion and directed movement, where we show that directed movement alone is sufficient to explain bouquet formation dynamics.


PLOS ONE | 2015

Contribution of Chromosomes 1HchS and 6HchS to Fertility Restoration in the Wheat msH1 CMS System under Different Environmental Conditions.

Almudena Castillo; Cristina Rodríguez-Suárez; Azahara C. Martín; Fernando Pistón

Exploiting hybrid wheat heterosis has been long pursued to increase crop yield, stability and uniformity. Cytoplasmic male sterility (CMS) systems based in the nuclear-cytoplasmic incompatible interactions are a classic way for hybrid seed production, but to date, no definitive system is available in wheat. The msH1 CMS system results from the incompatibility between the nuclear genome of wheat and the cytoplasmic genome of the wild barley Hordeum chilense. Fertility restoration of the CMS phenotype was first associated with the disomic addition of the short arm of chromosome 6H from H. chilense. In further studies it was observed that chromosome arm 1HchS was also implicated, and the combination of genes in both chromosome arms restored fertility more efficiently. In this work we aim to dissect the effect of each chromosome in fertility restoration when combined in different genomic backgrounds and under different environmental conditions. We propose a model to explain how restoration behaves in the msH1 system and generate valuable information necessary to develop an efficient system for hybrid wheat production.


Frontiers in Plant Science | 2018

Magnesium Increases Homoeologous Crossover Frequency During Meiosis in ZIP4 (Ph1 Gene) Mutant Wheat-Wild Relative Hybrids

María-Dolores Rey; Azahara C. Martín; Mark A. Smedley; Sadiye Hayta; Wendy Harwood; Peter Shaw; Graham Moore

Wild relatives provide an important source of useful traits in wheat breeding. Wheat and wild relative hybrids have been widely used in breeding programs to introduce such traits into wheat. However, successful introgression is limited by the low frequency of homoeologous crossover (CO) between wheat and wild relative chromosomes. Hybrids between wheat carrying a 70 Mb deletion on chromosome 5B (ph1b) and wild relatives, have been exploited to increase the level of homoeologous CO, allowing chromosome exchange between their chromosomes. In ph1b-rye hybrids, CO number increases from a mean of 1 CO to 7 COs per cell. CO number can be further increased up to a mean of 12 COs per cell in these ph1b hybrids by treating the plants with Hoagland solution. More recently, it was shown that the major meiotic crossover gene ZIP4 on chromosome 5B (TaZIP4-B2) within the 70 Mb deletion, was responsible for the restriction of homoeologous COs in wheat-wild relative hybrids, confirming the ph1b phenotype as a complete Tazip4-B2 deletion mutant (Tazip4-B2 ph1b). In this study, we have identified the particular Hoagland solution constituent responsible for the increased chiasma frequency in Tazip4-B2 ph1b mutant-rye hybrids and extended the analysis to Tazip4-B2 TILLING and CRISPR mutant-Ae variabilis hybrids. Chiasma frequency at meiotic metaphase I, in the absence of each Hoagland solution macronutrient (NH4 H2PO4, KNO3, Ca (NO3)2·4H2O or Mg SO4·7H2O) was analyzed. A significant decrease in homoeologous CO frequency was observed when the Mg2+ ion was absent. A significant increase of homoeologous CO frequency was observed in all analyzed hybrids, when plants were irrigated with a 1 mM Mg2+ solution. These observations suggest a role for magnesium supplementation in improving the success of genetic material introgression from wild relatives into wheat.


bioRxiv | 2018

Magnesium increases homoeologous crossover frequency in ZIP4 (Ph1) mutant wheat-wild relative hybrids

María-Dolores Rey; Azahara C. Martín; Mark A. Smedley; Sadiye Hayta; Wendy Harwood; Peter Shaw; Graham Moore

Wild relatives provide an important source of useful traits in wheat breeding. Wheat and wild relative hybrids have been widely used in breeding programs to introduce such traits into wheat. However, successful introgression is limited by the low frequency of homoeologous crossover (CO) between wheat and wild relative chromosomes. Hybrids between wheat carrying a 70Mb deletion on chromosome 5B (ph1b) and wild relatives, have been exploited to increase the level of homoeologous CO, allowing chromosome exchange between their chromosomes. In ph1b-rye hybrids, CO number increases from a mean of 1 CO to 7 COs per cell. CO number can be further increased up to a mean of 12 COs per cell in these ph1b hybrids by treating the plants with Hoagland solution. More recently, it was shown that the major meiotic crossover gene ZIP4 on chromosome 5B (TaZIP4-B2) within the 70Mb deletion, was responsible for the restriction of homoeologous COs in wheat-wild relative hybrids, confirming the ph1b phenotype as a complete Tazip4-B2 deletion mutant (Tazip4-B2 ph1b). In this study, we have identified the particular Hoagland solution constituent responsible for the increased chiasma frequency in Tazip4-B2 ph1b mutant-rye hybrids and extended the analysis to Tazip4-B2 TILLING and CRISPR mutant-Ae variabilis hybrids. Chiasma frequency at meiotic metaphase I, in the absence of each Hoagland solution macronutrient (NH4 H2PO4, KNO3, Ca (NO3)2·4H2O or Mg SO4·7H2O) was analysed. A significant decrease in homoeologous CO frequency was observed when the Mg2+ ion was absent. A significant increase of homoeologous CO frequency was observed in all analysed hybrids, when plants were irrigated with a 1mM Mg2+ solution. These observations suggest a role for magnesium supplementation in improving the success of genetic material introgression from wild relatives into wheat.

Collaboration


Dive into the Azahara C. Martín's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge