Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Azman Ali Raymond is active.

Publication


Featured researches published by Azman Ali Raymond.


Pharmacological Research | 2015

Glycogen Synthase Kinase-3 Beta (GSK-3β) Signaling: Implications for Parkinson's Disease

Mojtaba Golpich; Elham Amini; Fatemeh Hemmati; Norlinah Mohamed Ibrahim; Behrouz Rahmani; Zahurin Mohamed; Azman Ali Raymond; Leila Dargahi; Rasoul Ghasemi; Abolhassan Ahmadiani

Glycogen synthase kinase 3 (GSK-3) dysregulation plays an important role in the pathogenesis of numerous disorders, affecting the central nervous system (CNS) encompassing both neuroinflammation and neurodegenerative diseases. Several lines of evidence have illustrated a key role of the GSK-3 and its cellular and molecular signaling cascades in the control of neuroinflammation. Glycogen synthase kinase 3 beta (GSK-3β), one of the GSK-3 isomers, plays a major role in neuronal apoptosis and its inhibition decreases expression of alpha-Synuclein (α-Synuclein), which make this kinase an attractive therapeutic target for neurodegenerative disorders. Parkinsons disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. Thus, understanding the role of GSK-3β in PD will enhance our knowledge of the basic mechanisms underlying the pathogenesis of this disorder and facilitate the identification of new therapeutic avenues. In recent years, GSK-3β has been shown to play essential roles in modulating a variety of cellular functions, which have prompted efforts to develop GSK-3β inhibitors as therapeutics. In this review, we summarize GSK-3 signaling pathways and its association with neuroinflammation. Moreover, we highlight the interaction between GSK-3β and several cellular processes involved in the pathogenesis of PD, including the accumulation of α-Synuclein aggregates, oxidative stress and mitochondrial dysfunction. Finally, we discuss about GSK-3β inhibitors as a potential therapeutic strategy in PD.


Seizure-european Journal of Epilepsy | 2010

ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: a systematic review and meta-analysis.

Batoul Sadat Haerian; Harun Roslan; Azman Ali Raymond; Chong Tin Tan; Kheng Seang Lim; S.Z. Zulkifli; E.H.M. Mohamed; Hui Jan Tan; Zahurin Mohamed

OBJECTIVE The C3435T, a major allelic variant of the ABCB1 gene, is proposed to play a crucial role in drug-resistance in epilepsy. The C/C genotype carriers reportedly are at higher risk of pharmacoresistance to AEDs, but only in some studies. The hypothesis of the C-variant associated risk and resistance to antiepileptic drugs (AEDs) has been hampered by conflicting results from inadequate power in case-control studies. To assess the role of C3435T polymorphism in drug-resistance in epilepsy, a systematic review and meta-analysis was conducted. METHODS Databases were obtained from the Cochrane Library, MEDLINE, EMBASE, major American and European conference abstracts, and www.google.my for genetic association studies up to February 2010. All the case-control association studies evaluating the role of ABCB1 C3435T in pharmacoresistance to AEDs were identified. The new definition of treatment outcome from International League Against Epilepsy (ILAE) was used for including studies for sub-analysis. To measure the strength of genetic association for the gene variant, the odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using models of both fixed- and random-effects for comparisons of the alleles and genotypes with co-dominant (C/C vs. T/T, C/T vs. T/T), dominant (C/C+C/T vs. T/T), and recessive (C/C vs. C/T+T/T) models in overall and in ethnicity subgroups. The 19 studies were selected for the next sub-analysis based on the new definition of drug-responsiveness and drug-resistance from ILAE. The same analysis was also performed for treatment outcome and ethnicity subgroups. RESULTS A total of 22 association studies including 3231 (47.8%) drug-resistant patients and 3524 (52.2%) drug-responsive patients or healthy controls (genotyped for C3435T) were pooled in this meta-analysis. The allelic association of ABCB1 C3435T with risk of drug-resistance was not significant under fixed-effects model, 1.06 (95% CI 0.98-1.14, p=0.12) and random-effects model, 1.10 (0.93-1.30, p=0.28) in overall and in the subgroup analysis by ethnicity. Similar results were also obtained for all genetic models in the stratified analyses by new definition of drug-resistance by ILAE and ethnicity subgroups. There was no publication bias. CONCLUSION We failed to show an association between the ABCB1 C3435T polymorphism and the risk of drug-resistance suggesting a revision in contribution of this polymorphism in the multi-drug transporters hypothesis of pharmacoresistance to AEDs in epilepsy.


Pharmacogenomics | 2011

Association of ABCB1 gene polymorphisms and their haplotypes with response to antiepileptic drugs: a systematic review and meta-analysis.

Batoul Sadat Haerian; Kheng Seang Lim; Chong Tin Tan; Azman Ali Raymond; Zahurin Mohamed

AIMS Several studies demonstrated a link between ABCB1 gene variants and the response to treatment in epilepsy, but the results have been inconclusive. Here, we performed the first haplotype meta-analysis to examine the association of haplotypes of ABCB1 common variants with the response to treatment in epilepsy. MATERIALS & METHODS We meta-analyzed the studies that evaluated the role of ABCB1 C1236T, G2677T/A and C3435T polymorphisms and their haplotypes in the response to treatment. RESULTS Meta-analysis of 23 studies (7067 patients) showed no significant association of ABCB1 alleles, genotypes and haplotypes with the response to treatment in the overall population or in each ethnicity subgroup. CONCLUSION Our data suggest that the haplotypes of these loci may not be involved in the response to treatment.


PLOS ONE | 2013

The Clinical Significance of Vitamin D in Systemic Lupus Erythematosus: A Systematic Review

Rajalingham Sakthiswary; Azman Ali Raymond

Background Vitamin D deficiency is more prevalent among SLE patients than the general population. Over the past decade, many studies across the globe have been carried out to investigate the role of vitamin D in SLE from various clinical angles. Therefore, the aim of this systematic review is to summarise and evaluate the evidence from the published literature; focusing on the clinical significance of vitamin D in SLE. Methods The following databases were searched: MEDLINE, Scopus, Web of Knowledge and CINAHL, using the terms “lupus”, “systemic lupus erythematosus”, “SLE and “vitamin D”. We included only adult human studies published in the English language between 2000 and 2012.The reference lists of included studies were thoroughly reviewed in search for other relevant studies. Results A total of 22 studies met the selection criteria. The majority of the studies were observational (95.5%) and cross sectional (90.9%). Out of the 15 studies which looked into the association between vitamin D and SLE disease activity, 10 studies (including the 3 largest studies in this series) revealed a statistically significant inverse relationship. For disease damage, on the other hand, 5 out of 6 studies failed to demonstrate any association with vitamin D levels. Cardiovascular risk factors such as insulin resistance, hypertension and hypercholesterolaemia were related to vitamin D deficiency, according to 3 of the studies. Conclusion There is convincing evidence to support the association between vitamin D levels and SLE disease activity. There is paucity of data in other clinical aspects to make firm conclusions.


Pharmacogenomics | 2013

SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to antiepileptic drugs: a multicenter cohort study and meta-analysis

Batoul Sadat Haerian; Larry Baum; Patrick Kwan; Hui Jun Tan; Azman Ali Raymond; Zahurin Mohamed

AIM Approximately a third of newly diagnosed epilepsy patients do not respond to antiepileptic drugs (AEDs). Evidence suggests that low penetrance variants in the genes of drug targets such as voltage-gated sodium channels may be involved in drug responsiveness. To examine this hypothesis, we compared data from two epilepsy cohorts from Malaysia and Hong Kong, as well as a meta-analysis from published data. MATERIALS & METHODS Genotype analysis of 39 polymorphisms located in the SCN1A, SCN2A and SCN3A genes was performed on 1504 epilepsy patients from Malaysia and Hong Kong who were receiving AEDs. Meta-analysis was performed for pooled data of SCN1A rs3812718 and rs2298771, and SCN2A rs17183814 polymorphisms. RESULTS Our data from the Hong Kong and Malaysia cohorts showed no significant allele, genotype and haplotype association of polymorphisms in the SCN1A, SCN2A, and SCN3A genes with drug responsiveness in epilepsy. This finding was supported by a meta-analysis for SCN1A rs3812718 and rs2298771, and for SCN2A rs17183814 polymorphisms. CONCLUSION Our comprehensive study suggests that common polymorphisms in SCN1A, SCN2A and SCN3A do not play major roles in influencing response to AEDs. Original submitted 11 March 2013; Revision submitted 31 May 2013.


Seizure-european Journal of Epilepsy | 2011

Lack of association of ABCB1 and PXR polymorphisms with response to treatment in epilepsy

Batoul Sadat Haerian; Kheng Seang Lim; E.H.M. Mohamed; Hui Jan Tan; Chong Tin Tan; Azman Ali Raymond; Chee Piau Wong; Sau Wei Wong; Zahurin Mohamed

It is proposed that overexpression of P-glycoprotein (P-gp), encoded by the ABC subfamily B member 1 (ABCB1) gene, is involved in resistance to antiepileptic drugs (AEDs) in about 30% of patients with epilepsy. Genetic variation and haplotype patterns are population specific which may cause different phenotypes such as response to AEDs. Although several studies examined the link between the common polymorphisms in the ABCB1 gene with resistance to AEDs, the results have been conflicting. This controversy may be caused by the effect of some confounders such as ethnicity and polytherapy. Moreover, expression of the ABCB1 gene is under the control of pregnane X receptor (PXR). Evidence showed that PXR gene contribute to the response to treatment. The aim of this study was to assess the association of ABCB1 and PXR genetic polymorphisms with response to the carbamazepine (CBZ) or sodium valproate (VPA) monotherapy in epilepsy. Genotypes were assessed in 685 Chinese, Indian, and Malay epilepsy patients for ABCB1 (C1236T, G2677T, C3435T) and PXR (G7635A) polymorphisms. No association between these polymorphisms and their haplotypes, and interaction between them, with response to treatment was observed in the overall group or in the Chinese, Indian, and Malay subgroups. Our data showed that these polymorphisms may not contribute to the response to CBZ or VPA monotherapy treatment in epilepsy.


Epileptic Disorders | 2011

Association between ABCB1 polymorphism and response to sodium valproate treatment in Malaysian epilepsy patients

Batoul Sadat Haerian; Kheng Seang Lim; Hui Jan Tan; Elsa Hanifa Mejia Mohamed; Chong Tin Tan; Azman Ali Raymond; Chee Piau Wong; Sau Wei Wong; Haslyna Omar; Harun Roslan; Zahurin Mohamed

Over-expression of P-glycoprotein, encoded by the ABCB1 gene, is proposed to be involved in resistance to antiepileptic drugs in about 30% of patients with epilepsy. Here, we investigated the possible association between ABCB1 polymorphisms and sodium valproate (VPA) treatment in Malaysian epilepsy patients. Genotypes were assessed in 249 drug-resistant and 256 drug-responsive Malaysian patients for C1236T, G2677T/A, and C 5T polymorphisms in the ABCB1 gene. No genotypes, alleles, or haplotypes were associated with the response to VPA in either the overall group or Chinese, Indian, and Malay subgroups. Our data suggest that C1236T, G2677T/A, and C3435T polymorphisms in the ABCB1 gene do not contribute to the response to VPA in patients with epilepsy.


Molecular Neurobiology | 2014

Crosstalk Between Insulin and Toll-like Receptor Signaling Pathways in the Central Nervous system

Fatemeh Hemmati; Rasoul Ghasemi; Norlinah Mohamed Ibrahim; Leila Dargahi; Zahurin Mohamed; Azman Ali Raymond; Abolhassan Ahmadiani

Neuroinflammation is known as a key player in a variety of neurodegenerative and/or neurological diseases. Brain Toll-like receptors (TLRs) are leading elements in the initiation and progression of neuroinflammation and the development of different neuronal diseases. Furthermore, TLR activation is one of the most important elements in the induction of insulin resistance in different organs such as the central nervous system. Involvement of insulin signaling dysregulation and insulin resistance are also shown to contribute to the pathology of neurological diseases. Considering the important roles of TLRs in neuroinflammation and central insulin resistance and the effects of these processes in the initiation and progression of neurodegenerative and neurological diseases, here we are going to review current knowledge about the potential crosstalk between TLRs and insulin signaling pathways in neuroinflammatory disorders of the central nervous system.


Seizure-european Journal of Epilepsy | 2011

Lack of association of ABCB1 haplotypes on five loci with response to treatment in epilepsy

Batoul Sadat Haerian; Kheng Seang Lim; E.H.M. Mohamed; Hui Jan Tan; Chong Tin Tan; Azman Ali Raymond; Chee Piau Wong; Sau Wei Wong; Zahurin Mohamed

Approximately one third of newly treated epilepsy patients do not respond to antiepileptic drugs (AEDs). Overexpression of P-glycoprotein (P-gp) efflux transporter has been proposed to have a critical role in causing resistance to AEDs. P-gp is a product of the ATP-binding cassette subfamily B member 1 (ABCB1) gene. The purpose of this study was to investigate a possible link between ABCB1 rs3789243 C>T, C1236T, G2677T/A, rs6949448 C>T, and C3435T haplotypes with response to carbamazepine (CBZ) or sodium valproate (VPA) monotherapy in Malaysian epilepsy patients. No ABCB1 haplotype association was found with response to either CBZ or VPA monotherapy in the Chinese, Indian, and Malay patients. C3435 allele carriers of the Indian males with cryptogenic epilepsy were more prone to resistance to either CBZ or VPA than carriers of T allele. Moreover, rs3789243T allele carriers of Malay females with symptomatic epilepsy were more resistant to either CBZ or VPA than C allele carriers. Our findings suggest that the ABCB1 rs3789243 C>T, C1236T, G2677T/A, rs6949448 C>T, and C3435T haplotypes do not contribute to response to AED treatment in epilepsy.


Molecular Neurobiology | 2015

Preconditioning as a Potential Strategy for the Prevention of Parkinson's Disease

Mojtaba Golpich; Behrouz Rahmani; Norlinah Mohamed Ibrahim; Leila Dargahi; Zahurin Mohamed; Azman Ali Raymond; Abolhassan Ahmadiani

Parkinson’s disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. A numerous of cellular processes including oxidative stress, mitochondrial dysfunction, and accumulation of α-synuclein aggregates are considered to contribute to the pathogenesis of Parkinson’s disease. A further understanding of the cellular and molecular mechanisms involved in the pathophysiology of PD is crucial for developing effective diagnostic, preventative, and therapeutic strategies to cure this devastating disorder. Preconditioning (PC) is assumed as a natural adaptive process whereby a subthreshold stimulus can promote protection against a subsequent lethal stimulus in the brain as well as in other tissues that affords robust brain tolerance facing neurodegenerative insults. Multiple lines of evidence have demonstrated that preconditioning as a possible neuroprotective technique may reduce the neural deficits associated with neurodegenerative diseases such as PD. Throughout the last few decades, a lot of efforts have been made to discover the molecular determinants involved in preconditioning-induced protective responses; although, the accurate mechanisms underlying this “tolerance” phenomenon are not fully understood in PD. In this review, we will summarize pathophysiology and current therapeutic approaches in PD and discuss about preconditioning in PD as a potential neuroprotective strategy. Also the role of gene reprogramming and mitochondrial biogenesis involved in the preconditioning-mediated neuroprotective events will be highlighted. Preconditioning may represent a promising therapeutic weapon to combat neurodegeneration.

Collaboration


Dive into the Azman Ali Raymond's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Jan Tan

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry Baum

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Patrick Kwan

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar

Sau Wei Wong

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Norlinah Mohamed Ibrahim

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge