Zahurin Mohamed
University of Malaya
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zahurin Mohamed.
Molecular Neurobiology | 2013
Rasoul Ghasemi; Ali Haeri; Leila Dargahi; Zahurin Mohamed; Abolhassan Ahmadiani
Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.
Pharmacogenetics | 1992
Wichittra Tassaneeyakul; Zahurin Mohamed; Donald J. Birkett; Michael E. McManus; Maurice E. Veronese; Robert H. Tukey; Linda C. Quattrochi; Frank J. Gonzalez; John O. Miners
The molecular basis for the use of caffeine (CA; 1,3,7-trimethylxanthine) as a probe for specific human cytochromes P450 has been investigated. The CA 1-, 3- and 7-demethylations (to form theobromine, paraxanthine and theophylline, respectively) all followed biphasic kinetics in human liver microsomes. Mean apparent Km values for the high- and low-affinity components of the demethylations ranged from 0.13-0.31 nM and 19.2-30.0 mM, respectively. cDNA-expressed CYP1A2 catalysed all three CA demethylations, and the apparent Km for CA 3-demethylation (the major metabolic pathway in humans) by the expressed enzyme was similar to the Km for the high-affinity liver microsomal CA 3-demethylase. IC50 values for inhibition of the CA demethylations by alpha-naphthoflavone were similar for both expressed CYP1A2 and the high-affinity microsomal demethylases. Moreover, CA was a competitive inhibitor of expressed CYP1A2 catalysed phenacetin O-deethylation, with the apparent Ki (0.080 mM) closely matching the apparent Km (0.082 mM) for CA 3-demethylation by the expressed enzyme. Expressed CYP1A1 was additionally shown to catalyse the 3-demethylation of CA, although activity was lower than that observed for CYP1A2. While these data indicate that CYP1A2 is responsible for the high-affinity component of human liver CA 3-demethylation, two limitations associated with the use of CA as an in vitro probe for CYP1A2 activity have been identified: (i) CA 3-demethylation reflects hepatic CYP1A2 activity only at appropriately low substrate concentrations; and (ii) CA is a non-specific CYP1A substrate and CYP1A1 may therefore contribute to CA 3-demethylase activity in tissues in which it is expressed. An anti-CYP3A antibody essentially abolished the 8-hydroxylation of CA to form trimethyluric acid, suggesting formation of this metabolite may potentially serve as a marker of CYP3A isozyme(s) activity.
Pharmacological Research | 2015
Mojtaba Golpich; Elham Amini; Fatemeh Hemmati; Norlinah Mohamed Ibrahim; Behrouz Rahmani; Zahurin Mohamed; Azman Ali Raymond; Leila Dargahi; Rasoul Ghasemi; Abolhassan Ahmadiani
Glycogen synthase kinase 3 (GSK-3) dysregulation plays an important role in the pathogenesis of numerous disorders, affecting the central nervous system (CNS) encompassing both neuroinflammation and neurodegenerative diseases. Several lines of evidence have illustrated a key role of the GSK-3 and its cellular and molecular signaling cascades in the control of neuroinflammation. Glycogen synthase kinase 3 beta (GSK-3β), one of the GSK-3 isomers, plays a major role in neuronal apoptosis and its inhibition decreases expression of alpha-Synuclein (α-Synuclein), which make this kinase an attractive therapeutic target for neurodegenerative disorders. Parkinsons disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. Thus, understanding the role of GSK-3β in PD will enhance our knowledge of the basic mechanisms underlying the pathogenesis of this disorder and facilitate the identification of new therapeutic avenues. In recent years, GSK-3β has been shown to play essential roles in modulating a variety of cellular functions, which have prompted efforts to develop GSK-3β inhibitors as therapeutics. In this review, we summarize GSK-3 signaling pathways and its association with neuroinflammation. Moreover, we highlight the interaction between GSK-3β and several cellular processes involved in the pathogenesis of PD, including the accumulation of α-Synuclein aggregates, oxidative stress and mitochondrial dysfunction. Finally, we discuss about GSK-3β inhibitors as a potential therapeutic strategy in PD.
Seizure-european Journal of Epilepsy | 2010
Batoul Sadat Haerian; Harun Roslan; Azman Ali Raymond; Chong Tin Tan; Kheng Seang Lim; S.Z. Zulkifli; E.H.M. Mohamed; Hui Jan Tan; Zahurin Mohamed
OBJECTIVE The C3435T, a major allelic variant of the ABCB1 gene, is proposed to play a crucial role in drug-resistance in epilepsy. The C/C genotype carriers reportedly are at higher risk of pharmacoresistance to AEDs, but only in some studies. The hypothesis of the C-variant associated risk and resistance to antiepileptic drugs (AEDs) has been hampered by conflicting results from inadequate power in case-control studies. To assess the role of C3435T polymorphism in drug-resistance in epilepsy, a systematic review and meta-analysis was conducted. METHODS Databases were obtained from the Cochrane Library, MEDLINE, EMBASE, major American and European conference abstracts, and www.google.my for genetic association studies up to February 2010. All the case-control association studies evaluating the role of ABCB1 C3435T in pharmacoresistance to AEDs were identified. The new definition of treatment outcome from International League Against Epilepsy (ILAE) was used for including studies for sub-analysis. To measure the strength of genetic association for the gene variant, the odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using models of both fixed- and random-effects for comparisons of the alleles and genotypes with co-dominant (C/C vs. T/T, C/T vs. T/T), dominant (C/C+C/T vs. T/T), and recessive (C/C vs. C/T+T/T) models in overall and in ethnicity subgroups. The 19 studies were selected for the next sub-analysis based on the new definition of drug-responsiveness and drug-resistance from ILAE. The same analysis was also performed for treatment outcome and ethnicity subgroups. RESULTS A total of 22 association studies including 3231 (47.8%) drug-resistant patients and 3524 (52.2%) drug-responsive patients or healthy controls (genotyped for C3435T) were pooled in this meta-analysis. The allelic association of ABCB1 C3435T with risk of drug-resistance was not significant under fixed-effects model, 1.06 (95% CI 0.98-1.14, p=0.12) and random-effects model, 1.10 (0.93-1.30, p=0.28) in overall and in the subgroup analysis by ethnicity. Similar results were also obtained for all genetic models in the stratified analyses by new definition of drug-resistance by ILAE and ethnicity subgroups. There was no publication bias. CONCLUSION We failed to show an association between the ABCB1 C3435T polymorphism and the risk of drug-resistance suggesting a revision in contribution of this polymorphism in the multi-drug transporters hypothesis of pharmacoresistance to AEDs in epilepsy.
CNS Neuroscience & Therapeutics | 2017
Mojtaba Golpich; Elham Amini; Zahurin Mohamed; Raymond Azman Ali; Norlinah Mohamed Ibrahim; Abolhassan Ahmadiani
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological‐based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimers disease (AD), Parkinsons disease (PD), Huntingtons disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
Behavioural Brain Research | 2013
Fatemeh Hemmati; Leila Dargahi; Sanaz Nasoohi; Rana Omidbakhsh; Zahurin Mohamed; Zamri Chik; Murali Naidu; Abolhassan Ahmadiani
Alzheimers disease (AD) as a neurodegenerative brain disorder is the most common cause of dementia. To date, there is no causative treatment for AD and there are few preventive treatments either. The sphingosine-1-phosphate receptor modulator FTY720 (fingolimod) prevents lymphocytes from contributing to an autoimmune reaction and has been approved for multiple sclerosis treatment. In concert with other studies showing the anti-inflammatory and protective effect of FTY720 in some neurodegenerative disorders like ischemia, we have recently shown that FTY720 chronic administration prevents from impairment of spatial learning and memory in AD rats. Here FTY720 was examined on AD rats in comparison to the only clinically approved NMDA receptor antagonist, Memantine. Passive avoidance task showed significant memory restoration in AD animals received FTY720 comparable to Memantine. Upon gene profiling by QuantiGene Plex, this behavioral outcomes was concurrent with considerable alterations in some genes transcripts like that of mitogen activated protein kinases (MAPKs) and some inflammatory markers that may particularly account for the detected decline in hippocampal neural damage or memory impairment associated with AD. From a therapeutic standpoint, our findings conclude that FTY720 may suggest new opportunities for AD management probably based on several modulatory effects on genes involved in cell death or survival.
Molecular Neurobiology | 2013
Rasoul Ghasemi; Leila Dargahi; Ali Haeri; Maryam Moosavi; Zahurin Mohamed; Abolhassan Ahmadiani
Arduous efforts have been made in the last three decades to elucidate the role of insulin in the brain. A growing number of evidences show that insulin is involved in several physiological function of the brain such as food intake and weight control, reproduction, learning and memory, neuromodulation and neuroprotection. In addition, it is now clear that insulin and insulin disturbances particularly diabetes mellitus may contribute or in some cases play the main role in development and progression of neurodegenerative and neuropsychiatric disorders. Focusing on the molecular mechanisms, this review summarizes the recent findings on the involvement of insulin dysfunction in neurological disorders like Alzheimer’s disease, Parkinson’s disease and Huntington’s disease and also mental disorders like depression and psychosis sharing features of neuroinflammation and neurodegeneration.
Pharmacogenomics | 2011
Batoul Sadat Haerian; Kheng Seang Lim; Chong Tin Tan; Azman Ali Raymond; Zahurin Mohamed
AIMS Several studies demonstrated a link between ABCB1 gene variants and the response to treatment in epilepsy, but the results have been inconclusive. Here, we performed the first haplotype meta-analysis to examine the association of haplotypes of ABCB1 common variants with the response to treatment in epilepsy. MATERIALS & METHODS We meta-analyzed the studies that evaluated the role of ABCB1 C1236T, G2677T/A and C3435T polymorphisms and their haplotypes in the response to treatment. RESULTS Meta-analysis of 23 studies (7067 patients) showed no significant association of ABCB1 alleles, genotypes and haplotypes with the response to treatment in the overall population or in each ethnicity subgroup. CONCLUSION Our data suggest that the haplotypes of these loci may not be involved in the response to treatment.
PLOS ONE | 2013
Kavita S. Subramaniam; Seng Tian Tham; Zahurin Mohamed; Yin Ling Woo; Noor Azmi Mat Adenan; Ivy Chung
Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs) using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin) and hormonal (estrogen and progesterone) receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175%) when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51%) (P<0.0001). These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001), suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR), also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP)-1, interleukin (IL)-6, IL-8, RANTES and vascular endothelial growth factor (VEGF) than normal fibroblasts. Our data suggests that in contrast to normal fibroblasts, CAFs may exhibit a pro-tumorigenic effect in the progression of endometrial cancer, and PI3K/Akt and MAPK/Erk signaling may represent critical regulators in how endometrial cancer cells respond to their microenvironment.
Molecules | 2011
Wai Mun Kong; Zamri Chik; Murali Ramachandra; Umarani Subramaniam; Raja Elina Raja Aziddin; Zahurin Mohamed
The extract from Mitragyna speciosa has been widely used as an opium substitute, mainly due to its morphine-like pharmacological effects. This study investigated the effects of M. speciosa alkaloid extract (MSE) on human recombinant cytochrome P450 (CYP) enzyme activities using a modified Crespi method. As compared with the liquid chromatography-mass spectrometry method, this method has shown to be a fast and cost-effective way to perform CYP inhibition studies. The results indicated that MSE has the most potent inhibitory effect on CYP3A4 and CYP2D6, with apparent half-maximal inhibitory concentration (IC50) values of 0.78 µg/mL and 0.636 µg/mL, respectively. In addition, moderate inhibition was observed for CYP1A2, with an IC50 of 39 µg/mL, and weak inhibition was detected for CYP2C19. The IC50 of CYP2C19 could not be determined, however, because inhibition was <50%. Competitive inhibition was found for the MSE-treated CYP2D6 inhibition assay, whereas non-competitive inhibition was shown in inhibition assays using CYP3A4, CYP1A2 and CYP2C19. Quinidine (CYP2D6), ketoconazole (CYP3A4), tranylcypromine (CYP2C19) and furafylline (CYP1A2) were used as positive controls throughout the experiments. This study shows that MSE may contribute to an herb-drug interaction if administered concomitantly with drugs that are substrates for CYP3A4, CYP2D6 and CYP1A2.