B. A. Griffith
Rothamsted Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. A. Griffith.
European Journal of Soil Science | 2016
R. J. Orr; Philip J. Murray; Chris J. Eyles; Martin Blackwell; Laura Cardenas; A.L. Collins; Jenni A J Dungait; Keith Goulding; B. A. Griffith; Sarah J. Gurr; Paul Harris; J. M. B. Hawkins; T.H. Misselbrook; Christopher J. Rawlings; Anita Shepherd; Hadewij Sint; Taro Takahashi; K N Tozer; Andrew P. Whitmore; Lianhai Wu; Michael R. F. Lee
Summary The North Wyke Farm Platform was established as a United Kingdom national capability for collaborative research, training and knowledge exchange in agro‐environmental sciences. Its remit is to research agricultural productivity and ecosystem responses to different management practices for beef and sheep production in lowland grasslands. A system based on permanent pasture was implemented on three 21‐ha farmlets to obtain baseline data on hydrology, nutrient cycling and productivity for 2 years. Since then two farmlets have been modified by either (i) planned reseeding with grasses that have been bred for enhanced sugar content or deep‐rooting traits or (ii) sowing grass and legume mixtures to reduce nitrogen fertilizer inputs. The quantities of nutrients that enter, cycle within and leave the farmlets were evaluated with data recorded from sensor technologies coupled with more traditional field study methods. We demonstrate the potential of the farm platform approach with a case study in which we investigate the effects of the weather, field topography and farm management activity on surface runoff and associated pollutant or nutrient loss from soil. We have the opportunity to do a full nutrient cycling analysis, taking account of nutrient transformations in soil, and flows to water and losses to air. The NWFP monitoring system is unique in both scale and scope for a managed land‐based capability that brings together several technologies that allow the effect of temperate grassland farming systems on soil moisture levels, runoff and associated water quality dynamics to be studied in detail. Highlights Can meat production systems be developed that are productive yet minimize losses to the environment? The data are from an intensively instrumented capability, which is globally unique and topical. We use sensing technologies and surveys to show the effect of pasture renewal on nutrient losses. Platforms provide evidence of the effect of meteorology, topography and farm activity on nutrient loss.
European Journal of Soil Science | 2016
Sabine Peukert; B. A. Griffith; Phillip J. Murray; C. J. A. Macleod; Richard E. Brazier
Summary One of the major challenges for agriculture is to understand the effects of agricultural practices on soil properties and diffuse pollution, to support practical farm‐scale land management. Three conventionally managed grassland fields with similar short‐term management, but different ploughing histories, were studied on a long‐term research platform: the North Wyke Farm Platform. The aims were to (i) quantify the between‐field and within‐field spatial variation in soil properties by geostatistical analysis, (ii) understand the effects of soil condition (in terms of nitrogen, phosphorus and carbon contents) on the quality of discharge water and (iii) establish robust baseline data before the implementation of various grassland management scenarios. Although the fields sampled had experienced the same land use and similar management for at least 6 years, there were differences in their mean soil properties. They showed different patterns of soil spatial variation and different rates of diffuse nutrient losses to water. The oldest permanent pasture field had the largest soil macronutrient concentrations and the greatest diffuse nutrient losses. We show that management histories affect soil properties and diffuse losses. Potential gains in herbage yield or benefits in water quality might be achieved by characterizing every field or by area‐specific management within fields (a form of precision agriculture for grasslands). Permanent pasture per se cannot be considered a mitigation measure for diffuse pollution. The between‐ and within‐field soil spatial variation emphasizes the importance of baseline characterization and will enable the reliable identification of any effects of future management change on the Farm Platform. Highlights Quantification of soil and water quality in grassland fields with contrasting management histories. Considerable spatial variation in soil properties and diffuse losses between and within fields. Contrasting management histories within and between fields strongly affected soil and water quality. Careful pasture management needed: the oldest pasture transferred the most nutrients from soil to water.
European Journal of Soil Science | 2016
Lianhai Wu; Xubo Zhang; B. A. Griffith; T.H. Misselbrook
Summary The North Wyke Farm Platform (NWFP) provides data from the field‐ to the farm‐scale, enabling the research community to address key issues in sustainable agriculture better and to test models that are capable of simulating soil, plant and animal processes involved in the systems. The tested models can then be used to simulate how agro‐ecosystems will respond to changes in the environment and management. In this study, we used baseline datasets generated from the NWFP to validate the Soil‐Plant‐Atmosphere Continuum System (SPACSYS) model in relation to the dynamics of soil water content, water loss from runoff and forage biomass removal. The validated model, together with future climate scenarios for the 2020s, 2050s and 2080s (from the International Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES): medium (A1B) and large (A1F1) emission scenarios), were used to simulate the long‐term responses of the system with three contrasting treatments on the NWFP. Simulation results demonstrated that the SPACSYS model could estimate reliably the dynamics of soil water content, water loss from runoff and drainage, and cut biomass for a permanent sward. The treatments responded in different ways under the climate change scenarios. More carbon (C) is fixed and respired by the swards treated with an increased use of legumes, whereas less C was lost through soil respiration with the planned reseeding. The deep‐rooting grass in the reseeding treatment reduced N losses through leaching, runoff and gaseous emissions, and water loss from runoff compared with the other two treatments.
European Journal of Soil Science | 2018
Paul Harris; Roland Bol; J. Evans; J. M. B. Hawkins; Elizabeth Dixon; K. Wolf; Jenni A J Dungait; B. A. Griffith; Mikolaj Herbst; M. S. Dhanoa; D. A. Beaumont; R. M. Dunn; G. L. B. Wiesenberg
This study compares data statistically that were collected from both long‐term drained and undrained plots to test hypotheses concerning the effect of drainage on plant community, soil total nitrogen (TN), soil total carbon (TC) and stable isotopic (δ15N, δ13C) contents in a permanent grassland. In addition, the effects of soil depth, topography (elevation, slope, aspect and compound topographic index (CTI)) and spatial autocorrelation were taken into account. Data were collected in 2010 at Rowden Moor, North Wyke, Devon, UK, where, for the plots of this study, subsurface drainage was introduced in 1987. The results of a set of six linear mixed models showed that: (i) plant community did not depend on drainage, but on elevation and spatial effects, (ii) both TN and TC not only depended on drainage, but also topography and sample depth, (iii) the TC to TN ratio did not depend on drainage, but on elevation, CTI and sample depth only, (iv) δ15N values did not depend on drainage, but on topography and sample depth and (v) δ13C values depended on drainage together with topography and sample depth. Thus, drainage represented a significant effect for only TN, TC and δ13C. Furthermore, changes in soil physicochemical conditions, following the introduction of drainage in the clay soil 24 years previously, induced a shift in the plant community from a Lolium perenne L. dominated grassland with numerous patches of Juncus species, towards one with Lolium perenne and Trifolium repens L.
16th International Association for Mathematical Geosciences - Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment: Challenges, Processes and Strategies, IAMG 2014 | 2016
Paul Harris; N. J.K. Howden; Sabine Peukert; V. Noacco; K. Ramezani; E. Tuominen; B. Eludoyin; Richard E. Brazier; Anita Shepherd; B. A. Griffith; R. J. Orr; Phillip J. Murray
The UK’s North Wyke Farm Platform (NWFP) for sustainable grassland farming is set up as a large agriculture modelling system of 15 hydrologically-isolated catchments, where in each catchment, water chemistry, precipitation and soil moisture data are continuously monitored. This spatio-temporal data are then interrogated with respect to climatic timings and changes in crop, livestock and farm management, across the NWFP. Complementary data sets are also found via spatial field surveys, remote sensing and greenhouse gas studies. This study focuses on one such field survey, consisting of soils data at 495 sites. We spatially explore this data using a geographically weighted principal components analysis, where we provide a novel adaptation of the technique to deal with the distinctly partitioned nature of the data, which is collected across 20 fields, spread over the 15 catchments.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2017
Adebayo Oluwole Eludoyin; B. A. Griffith; R. J. Orr; Roland Bol; T. A. Quine; Richard E. Brazier
ABSTRACT This study examined the hysteresis exhibited in concentration–discharge (C–Q) relationships in the runoff from four hydrologically separated fields (catchments) at an intensively managed grassland. The objectives were to examine C–Q relationships constructed from high-resolution time series of flow, temperature, pH, conductivity, nitrate and turbidity, and their implications for hydrological processes. High-resolution datasets from the quality assured records of the Rothamsted Research North Wyke Farm Platform in the UK were examined using a graphical method and cross-correlation statistics. The study found that storm events based C–Q hysteresis reflects the cross-correlation that is generally hidden in time series analysis of large datasets, and that although Q and water quality variables can be effectively influenced by catchment size, the C–Q relationship is less significantly influenced. The dominant C–Q relationships of the water variables in the study area reflect that saturated overland flow was prevalent during the study period in the catchments, while the CCF results indicate coupled transfer of sediments and solute in the area at lag ≥ 0. EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M. D. Fidelibus
European Journal of Soil Science | 2016
R. J. Orr; Philip J. Murray; Chris J. Eyles; Martin Blackwell; Laura Cardenas; A.L. Collins; Jenni A J Dungait; Keith Goulding; B. A. Griffith; Sarah J. Gurr; Paul Harris; J. M. B. Hawkins; T.H. Misselbrook; Christopher J. Rawlings; Anita Shepherd; Hadewij Sint; Taro Takahashi; K N Tozer; Andrew P. Whitmore; Lianhai Wu; Michael R. F. Lee
Summary The North Wyke Farm Platform was established as a United Kingdom national capability for collaborative research, training and knowledge exchange in agro‐environmental sciences. Its remit is to research agricultural productivity and ecosystem responses to different management practices for beef and sheep production in lowland grasslands. A system based on permanent pasture was implemented on three 21‐ha farmlets to obtain baseline data on hydrology, nutrient cycling and productivity for 2 years. Since then two farmlets have been modified by either (i) planned reseeding with grasses that have been bred for enhanced sugar content or deep‐rooting traits or (ii) sowing grass and legume mixtures to reduce nitrogen fertilizer inputs. The quantities of nutrients that enter, cycle within and leave the farmlets were evaluated with data recorded from sensor technologies coupled with more traditional field study methods. We demonstrate the potential of the farm platform approach with a case study in which we investigate the effects of the weather, field topography and farm management activity on surface runoff and associated pollutant or nutrient loss from soil. We have the opportunity to do a full nutrient cycling analysis, taking account of nutrient transformations in soil, and flows to water and losses to air. The NWFP monitoring system is unique in both scale and scope for a managed land‐based capability that brings together several technologies that allow the effect of temperate grassland farming systems on soil moisture levels, runoff and associated water quality dynamics to be studied in detail. Highlights Can meat production systems be developed that are productive yet minimize losses to the environment? The data are from an intensively instrumented capability, which is globally unique and topical. We use sensing technologies and surveys to show the effect of pasture renewal on nutrient losses. Platforms provide evidence of the effect of meteorology, topography and farm activity on nutrient loss.
European Journal of Soil Science | 2016
R. J. Orr; Philip J. Murray; Chris J. Eyles; Martin Blackwell; Laura Cardenas; A.L. Collins; Jenni A J Dungait; Keith Goulding; B. A. Griffith; Sarah J. Gurr; Paul Harris; J. M. B. Hawkins; T.H. Misselbrook; Christopher J. Rawlings; Anita Shepherd; Hadewij Sint; Taro Takahashi; K N Tozer; Andrew P. Whitmore; Lianhai Wu; Michael R. F. Lee
Summary The North Wyke Farm Platform was established as a United Kingdom national capability for collaborative research, training and knowledge exchange in agro‐environmental sciences. Its remit is to research agricultural productivity and ecosystem responses to different management practices for beef and sheep production in lowland grasslands. A system based on permanent pasture was implemented on three 21‐ha farmlets to obtain baseline data on hydrology, nutrient cycling and productivity for 2 years. Since then two farmlets have been modified by either (i) planned reseeding with grasses that have been bred for enhanced sugar content or deep‐rooting traits or (ii) sowing grass and legume mixtures to reduce nitrogen fertilizer inputs. The quantities of nutrients that enter, cycle within and leave the farmlets were evaluated with data recorded from sensor technologies coupled with more traditional field study methods. We demonstrate the potential of the farm platform approach with a case study in which we investigate the effects of the weather, field topography and farm management activity on surface runoff and associated pollutant or nutrient loss from soil. We have the opportunity to do a full nutrient cycling analysis, taking account of nutrient transformations in soil, and flows to water and losses to air. The NWFP monitoring system is unique in both scale and scope for a managed land‐based capability that brings together several technologies that allow the effect of temperate grassland farming systems on soil moisture levels, runoff and associated water quality dynamics to be studied in detail. Highlights Can meat production systems be developed that are productive yet minimize losses to the environment? The data are from an intensively instrumented capability, which is globally unique and topical. We use sensing technologies and surveys to show the effect of pasture renewal on nutrient losses. Platforms provide evidence of the effect of meteorology, topography and farm activity on nutrient loss.
Grass and Forage Science | 2007
J. Isselstein; B. A. Griffith; P. Pradel; S. Venerus
Journal of Environmental Quality | 2014
Sabine Peukert; B. A. Griffith; Phillip J. Murray; C. J. A. Macleod; Richard E. Brazier