Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. G. Almeida is active.

Publication


Featured researches published by B. G. Almeida.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity

Ana Mesquita; Martin Weinberger; Alexandra Silva; Belém Sampaio-Marques; B. G. Almeida; Cecília Leão; Vitor Santos Costa; Fernando Rodrigues; William C. Burhans; Paula Ludovico

The free radical theory of aging posits oxidative damage to macromolecules as a primary determinant of lifespan. Recent studies challenge this theory by demonstrating that in some cases, longevity is enhanced by inactivation of oxidative stress defenses or is correlated with increased, rather than decreased reactive oxygen species and oxidative damage. Here we show that, in Saccharomyces cerevisiae, caloric restriction or inactivation of catalases extends chronological lifespan by inducing elevated levels of the reactive oxygen species hydrogen peroxide, which activate superoxide dismutases that inhibit the accumulation of superoxide anions. Increased hydrogen peroxide in catalase-deficient cells extends chronological lifespan despite parallel increases in oxidative damage. These findings establish a role for hormesis effects of hydrogen peroxide in promoting longevity that have broad implications for understanding aging and age-related diseases.


The New England Journal of Medicine | 2014

Genetic PTX3 Deficiency and Aspergillosis in Stem-Cell Transplantation

Cristina Cunha; Franco Aversa; João F. Lacerda; Alessandro Busca; Oliver Kurzai; Matthias Grube; Jürgen Löffler; Johan Maertens; Alain S. Bell; Antonio Inforzato; Elisa Barbati; B. G. Almeida; Pedro Santos e Sousa; Anna Maria Barbui; Leonardo Potenza; Morena Caira; Fernando Rodrigues; Giovanni Salvatori; Livio Pagano; Mario Luppi; Alberto Mantovani; Andrea Velardi; Luigina Romani; Agostinho Carvalho

BACKGROUND The soluble pattern-recognition receptor known as long pentraxin 3 (PTX3) has a nonredundant role in antifungal immunity. The contribution of single-nucleotide polymorphisms (SNPs) in PTX3 to the development of invasive aspergillosis is unknown. METHODS We screened an initial cohort of 268 patients undergoing hematopoietic stem-cell transplantation (HSCT) and their donors for PTX3 SNPs modifying the risk of invasive aspergillosis. The analysis was also performed in a multicenter study involving 107 patients with invasive aspergillosis and 223 matched controls. The functional consequences of PTX3 SNPs were investigated in vitro and in lung specimens from transplant recipients. RESULTS Receipt of a transplant from a donor with a homozygous haplotype (h2/h2) in PTX3 was associated with an increased risk of infection, in both the discovery study (cumulative incidence, 37% vs. 15%; adjusted hazard ratio, 3.08; P=0.003) and the confirmation study (adjusted odds ratio, 2.78; P=0.03), as well as with defective expression of PTX3. Functionally, PTX3 deficiency in h2/h2 neutrophils, presumably due to messenger RNA instability, led to impaired phagocytosis and clearance of the fungus. CONCLUSIONS Genetic deficiency of PTX3 affects the antifungal capacity of neutrophils and may contribute to the risk of invasive aspergillosis in patients treated with HSCT. (Funded by the European Society of Clinical Microbiology and Infectious Diseases and others.).


IEEE Transactions on Magnetics | 1999

Ion beam deposition of Mn-Ir spin valves

V. Gehanno; Paulo P. Freitas; António Veloso; J. Ferrira; B. G. Almeida; J.B. Soasa; A. Kling; J. C. Soares; M.F. da Silva

Half-biased spin valves have been prepared by ion beam deposition. The magnetoresistance (MR) signal reaches 7.7% and the exchange field is 350 Oe with a coupling field of 15 Oe and a coercivity of the free layer equal to 4 Oe. The [111] texture induced by a very thin Ta buffer layer (thickness <10 /spl Aring/) has a strong effect in increasing the MR signal and coupling field, while decreasing the exchange field and coercivity. The blocking temperature of the MnIr-biased spin valves is 250/spl deg/C and a thermal stability study shows that the exchange field is constant up to 300/spl deg/C, under consecutive 5-h anneals at each temperature. After these anneals, the MR signal is still equal to 5%. These films show better thermal stability than equivalent samples prepared by sputtering.


Journal of Cell Science | 2007

NO-mediated apoptosis in yeast

B. G. Almeida; Sabrina Büttner; Steffen Ohlmeier; Alexandra Silva; Ana Mesquita; Belém Sampaio-Marques; Nuno S. Osório; Alexander Kollau; Bernhard Mayer; Cecília Leão; João Laranjinha; Fernando Rodrigues; Frank Madeo; Paula Ludovico

Nitric oxide (NO) is a small molecule with distinct roles in diverse physiological functions in biological systems, among them the control of the apoptotic signalling cascade. By combining proteomic, genetic and biochemical approaches we demonstrate that NO and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are crucial mediators of yeast apoptosis. Using indirect methodologies and a NO-selective electrode, we present results showing that H2O2-induced apoptotic cells synthesize NO that is associated to a nitric oxide synthase (NOS)-like activity as demonstrated by the use of a classical NOS kit assay. Additionally, our results show that yeast GAPDH is a target of extensive proteolysis upon H2O2-induced apoptosis and undergoes S-nitrosation. Blockage of NO synthesis with Nω-nitro-L-arginine methyl ester leads to a decrease of GAPDH S-nitrosation and of intracellular reactive oxygen species (ROS) accumulation, increasing survival. These results indicate that NO signalling and GAPDH S-nitrosation are linked with H2O2-induced apoptotic cell death. Evidence is presented showing that NO and GAPDH S-nitrosation also mediate cell death during chronological life span pointing to a physiological role of NO in yeast apoptosis.


Biochimica et Biophysica Acta | 2008

Drug-induced apoptosis in yeast

B. G. Almeida; Alexandra Silva; Ana Mesquita; Belém Sampaio-Marques; Fernando Rodrigues; Paula Ludovico

In order to alter the impact of diseases on human society, drug development has been one of the most invested research fields. Nowadays, cancer and infectious diseases are leading targets for the design of effective drugs, in which the primary mechanism of action relies on the modulation of programmed cell death (PCD). Due to the high degree of conservation of basic cellular processes between yeast and higher eukaryotes, and to the existence of an ancestral PCD machinery in yeast, yeasts are an attractive tool for the study of affected pathways that give insights into the mode of action of both antitumour and antifungal drugs. Therefore, we covered some of the leading reports on drug-induced apoptosis in yeast, revealing that in common with mammalian cells, antitumour drugs induce apoptosis through reactive oxygen species (ROS) generation and altered mitochondrial functions. The evidence presented suggests that yeasts may be a powerful model for the screening/development of PCD-directed drugs, overcoming the problem of cellular specificity in the design of antitumour drugs, but also enabling the design of efficient antifungal drugs, targeted to fungal-specific apoptotic regulators that do not have major consequences for human cells.


Proteomics | 2009

Yeast protein expression profile during acetic acid‐induced apoptosis indicates causal involvement of the TOR pathway

B. G. Almeida; Steffen Ohlmeier; Agostinho J. Almeida; Frank Madeo; Cecília Leão; Fernando Rodrigues; Paula Ludovico

Although acetic acid has been shown to induce apoptosis in yeast, the exact apoptotic mechanisms remain unknown. Here, we studied the effects of acetic acid treatment on yeast cells by 2‐DE, revealing alterations in the levels of proteins directly or indirectly linked with the target of rapamycin (TOR) pathway: amino‐acid biosynthesis, transcription/translation machinery, carbohydrate metabolism, nucleotide biosynthesis, stress response, protein turnover and cell cycle. The increased levels of proteins involved in amino‐acid biosynthesis presented a counteracting response to a severe intracellular amino‐acid starvation induced by acetic acid. Deletion of GCN4 and GCN2 encoding key players of general amino‐acid control (GAAC) system caused a higher resistance to acetic acid indicating an involvement of Gcn4p/Gcn2p in the apoptotic signaling. Involvement of the TOR pathway in acetic acid‐induced apoptosis was also reflected by the higher survival rates associated to a terminal deoxynucleotidyl transferase‐mediated dUTP nick end labeling (TUNEL)‐negative phenotype and lower reactive oxygen species levels of Δtor1 cells. In addition, deletion mutants for several downstream mediators of the TOR pathway revealed that apoptotic signaling involves the phosphatases Pph21p and Pph22p but not Sit4p. Altogether, our results indicate that GAAC and TOR pathways (Tor1p) are involved in the signaling of acetic acid‐induced apoptosis.


Frontiers in Neurology | 2013

Trinucleotide Repeats: A Structural Perspective

B. G. Almeida; Sara Fernandes; Isabel A. Abreu; Sandra Macedo-Ribeiro

Trinucleotide repeat (TNR) expansions are present in a wide range of genes involved in several neurological disorders, being directly involved in the molecular mechanisms underlying pathogenesis through modulation of gene expression and/or the function of the RNA or protein it encodes. Structural and functional information on the role of TNR sequences in RNA and protein is crucial to understand the effect of TNR expansions in neurodegeneration. Therefore, this review intends to provide to the reader a structural and functional view of TNR and encoded homopeptide expansions, with a particular emphasis on polyQ expansions and its role at inducing the self-assembly, aggregation and functional alterations of the carrier protein, which culminates in neuronal toxicity and cell death. Detail will be given to the Machado-Joseph Disease-causative and polyQ-containing protein, ataxin-3, providing clues for the impact of polyQ expansion and its flanking regions in the modulation of ataxin-3 molecular interactions, function, and aggregation.


Biochimica et Biophysica Acta | 2011

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase

Alexandra Silva; B. G. Almeida; Belém Sampaio-Marques; Marta Reis; Steffen Ohlmeier; Fernando Rodrigues; A. do Vale; Paula Ludovico

Yeast metacaspase (Yca1p) is required for the execution of apoptosis upon a wide range of stimuli. However, the specific degradome of this yeast protease has not been unraveled so far. By combining different methodologies described as requisites for a protein to be considered a protease substrate, such as digestome analysis, cleavage of recombinant GAPDH by metacaspase and evaluation of protein levels in vivo, we show that upon H(2)O(2)-induced apoptosis, the metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific target of metacaspase. Nitric oxide (NO) signaling, which mediates H(2)O(2)-induced apoptosis, is required for metacaspase specific GAPDH cleavage. In conclusion, in this work we identified GAPDH as the first direct yeast metacaspase substrate described so far. Although mammalian caspases and yeast metacaspase apparently have distinct target cleavage sites, GAPDH arises as a common substrate for these proteases.


Aquatic Toxicology | 2009

Metal stress induces programmed cell death in aquatic fungi.

Maria-Manuel Azevedo; B. G. Almeida; Paula Ludovico; Fernanda Cássio

Aquatic hyphomycetes are a group of fungi that play a key role in organic matter turnover in both clean and metal-polluted streams. We examined the ability of Cu or Zn to induce programmed cell death (PCD) in three aquatic hyphomycete species through the evaluation of typical apoptotic markers, namely reactive oxygen species (ROS) accumulation, caspase-like activity, nuclear morphological alterations, and the occurrence of DNA strand breaks assessed by TUNEL assay. The exposure to both metals induced apoptotic events in all tested aquatic fungi. The most tolerant fungi either to Zn (Varicosporium elodeae) or Cu (Heliscussubmersus) exhibited higher levels of PCD markers, suggesting that PCD processes might be linked to fungal resistance/tolerance to metal stress. Moreover, different patterns of apoptotic markers were found, namely a PCD process independent of ROS accumulation in V. elodeae exposed to Cu, or independent of caspase-like activity in Flagellospora curta exposed to Zn, or even without the occurrence of DNA strand breaks in F. curta exposed to Cu. This suggests that a multiplicity of PCD pathways might be operating in aquatic hyphomycetes. The occurrence of a tightly regulated cell death pathway, such as PCD, in aquatic hyphomycetes under metal stress might be a part of the mechanisms underlying fungal acclimation in metal-polluted streams, because it would allow the rapid removal of unwanted or damaged cells sparing nutrients and space for the fittest ones.


Molecular & Cellular Proteomics | 2015

Examination of Ataxin-3 (atx-3) Aggregation by Structural Mass Spectrometry Techniques: A Rationale for Expedited Aggregation upon Polyglutamine (polyQ) Expansion

Charlotte A. Scarff; B. G. Almeida; Joana Fraga; Sandra Macedo-Ribeiro; Sheena E. Radford; Alison E. Ashcroft

Expansion of polyglutamine stretches leads to the formation of polyglutamine-containing neuronal aggregates and neuronal death in nine diseases for which there currently are no treatments or cures. This is largely due to a lack in understanding of the mechanisms by which expanded polyglutamine regions contribute to aggregation and disease. To complicate matters further, several of the polyglutamine-disease related proteins, including ataxin-3, have a multistage aggregation mechanism in which flanking domain self-assembly precedes polyglutamine aggregation yet is influenced by polyglutamine expansion. How polyglutamine expansion influences flanking domain aggregation is poorly understood. Here, we use a combination of mass spectrometry and biophysical approaches to investigate this issue for ataxin-3. We show that the conformational dynamics of the flanking Josephin domain in ataxin-3 with an expanded polyglutamine tract are altered in comparison to those exhibited by its nonexpanded counterpart, specifically within the aggregation-prone region of the Josephin domain (amino acid residues 73–96). Expansion thus exposes this region more frequently in ataxin-3 containing an expanded polyglutamine tract, providing a molecular explanation of why aggregation is accelerated upon polyglutamine expansion. Here, harnessing the power of ion mobility spectrometry-mass spectrometry, oligomeric species formed during aggregation are characterized and a model for oligomer growth proposed. The results suggest that a conformational change occurs at the dimer level that initiates self-assembly. New insights into ataxin-3 fibril architecture are also described, revealing the region of the Josephin domain involved in protofibril formation and demonstrating that polyglutamine aggregation proceeds as a distinct second step after protofibril formation without requiring structural rearrangement of the protofibril core. Overall, the results enable the effect of polyglutamine expansion on every stage of ataxin-3 self-assembly, from monomer through to fibril, to be described and a rationale for expedited aggregation upon polyglutamine expansion to be provided.

Collaboration


Dive into the B. G. Almeida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

João Araújo

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge