Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulo J. G. Coutinho is active.

Publication


Featured researches published by Paulo J. G. Coutinho.


Journal of Colloid and Interface Science | 2011

SUPRAMOLECULAR ASSEMBLED NANOGEL MADE OF MANNAN

Silvia Ferreira Rodrigues Mendes Ferreira; Paula Pereira; Paula Sampaio; Paulo J. G. Coutinho; F. M. Gama

The supramolecular assembly of amphiphilic mannan, synthesized by the Michael addition of hydrophobic 1-hexadecanethiol to vinyl methacrylated mannan, originates in aqueous medium the formation of a nanogel, stabilized by hydrophobic interactions among alkyl chains. The critical aggregation concentration, calculated by fluorescence spectroscopy ranged between 0.002 and 0.01 mg/mL, depending on the polymer degree of substitution. The cryo-field emission scanning electron microscopy showed spherical macromolecular micelles with diameters between 100 and 500 nm. The dynamic light scattering analysis revealed a polydisperse colloidal system, with mean hydrodynamic diameter between 50 and 140 nm, depending on the polymer degree of substitution. The nanogel is negatively charged, stable over a 6 months storage period, and stable at pH 3-8, salt or urea solutions. Bovine serum albumin and curcumin were spontaneously incorporated in the nanogel, being stabilized by the hydrophobic domains, opening the possibility for future applications as potential delivery systems for therapeutic molecules. In vitro assays were carried out to characterize the biocompatibility of the nanogel. A toxic effect of mannan-C(16) was observed, specific to mouse macrophage-like cell line J774, not affecting mouse embryo fibroblast cell line 3T3 viability.


Biochimica et Biophysica Acta | 2011

DODAB:monoolein-based lipoplexes as non-viral vectors for transfection of mammalian cells

J. P. Neves Silva; A.C.N. Oliveira; Margarida Casal; Andreia C. Gomes; Paulo J. G. Coutinho; O. P. Coutinho; M. E. C. D. Real Oliveira

DNA/Cationic liposome complexes (lipoplexes) have been widely used as non-viral vectors for transfection. Neutral lipids in liposomal formulation are determinant for transfection efficiency using these vectors. In this work, we studied the potential of monoolein (MO) as helper lipid for cellular transfection. Lipoplexes composed of pDNA and dioctadecyldimethylammonium bromide (DODAB)/1-monooleoyl-rac-glycerol (MO) at different molar ratios (4:1, 2:1 and 1:1) and at different cationic lipid/DNA ratios were investigated. The physicochemical properties of the lipoplexes (size, charge and structure), were studied by Dynamic Light Scattering (DLS), Zeta Potential (ζ) and cryo-transmission electron microscopy (cryo-TEM). The effect of MO on pDNA condensation and the effect of heparin and heparan sulphate on the percentage of pDNA release from the lipoplexes were also studied by Ethidium Bromide (EtBr) exclusion assays and electrophoresis. Cytotoxicity and transfection efficiency of these lipoplexes were evaluated using 293T cells and compared with the golden standard helper lipids 1,2-dioleoyl-sn-glycero-3-hosphoethanolamine (DOPE) and cholesterol (Chol) as well as with a commercial transfection agent (Lipofectamine™ LTX). The internalization of transfected fluorescently-labeled pDNA was also visualized using the same cell line. The results demonstrate that the presence of MO not only increases pDNA compactation efficiency, but also affects the physicochemical properties of the lipoplexes, which can interfere with lipoplex-cell interactions. The DODAB:MO formulations tested showed little toxicity and successfully mediated in vitro cell transfection. These results were supported by fluorescence microscopy studies, which illustrated that lipoplexes were able to access the cytosol and deliver pDNA to the nucleus. DODAB:MO-based lipoplexes were thus validated as non-toxic, efficient lipofection vectors for genetic modification of mammalian cells. Understanding the relation between structure and activity of MO-based lipoplexes will further strengthen the development of these novel delivery systems.


Langmuir | 2010

Self-assembled nanogel made of mannan: synthesis and characterization.

Sílvia A. Ferreira; Paulo J. G. Coutinho; F. M. Gama

Amphiphilic mannan (mannan-C(16)) was synthesized by the Michael addition of hydrophobic 1-hexadecanethiol (C(16)) to hydroxyethyl methacrylated mannan (mannan-HEMA). Mannan-C(16) formed nanosized aggregates in water by self-assembly via the hydrophobic interaction among C(16) molecules as confirmed by hydrogen nuclear magnetic resonance ((1)H NMR), fluorescence spectroscopy, cryo-field emission scanning electron microscopy (cryo-FESEM), and dynamic light scattering (DLS). The mannan-C(16) critical aggregation concentration (cac), calculated by fluorescence spectroscopy with Nile red and pyrene, ranged between 0.04 and 0.02 mg/mL depending on the polymer degree of substitution of C(16) relative to methacrylated groups. Cryo-FESEM micrographs revealed that mannan-C(16) formed irregular spherical macromolecular micelles, in this work designated as nanogels, with diameters ranging between 100 and 500 nm. The influence of the polymer degree of substitution, DS(HEMA) and DS(C(16)), on the nanogel size and zeta potential was studied by DLS at different pH values and ionic strength and as a function of mannan-C(16) and urea concentrations. Under all tested conditions, the nanogel was negatively charged with a zeta potential close to zero. Mannan-C(16) with higher DS(HEMA) and DS(C(16)) values formed larger nanogels and were also less stable over a 6 month storage period and at concentrations close to the cac. When exposed to solutions of different pH and aggressive conditions of ionic strength and urea concentration, the size of mannan-C(16) varied to some extent but was always in the nanoscale range.


Colloids and Surfaces B: Biointerfaces | 2014

Tunable pDNA/DODAB:MO lipoplexes : the effect of incubation temperature on pDNA/DODAB:MO lipoplexes structure and transfection efficiency

João P. Neves Silva; Ana Cristina Norberto Gonçalves Oliveira; M. Lúcio; Andreia C. Gomes; Paulo J. G. Coutinho; M. Elisabete Oliveira

Dioctadecyldimethylammonium bromide (DODAB):1-monooleoyl-rac-glycerol (MO) cationic liposomes were reported as a promising alternative to common transfection agents, showing superior effectiveness on the transfection of the 293T mammalian cell line with pSV-β-gal plasmid DNA. The study of DODAB:MO aggregates in the absence of DNA has indicated that their morphology depends on the balance between DODABs tendency to form bilayer structures and MOs propensity to form inverted non-lamellar structures. Other parameters, such as the temperature have proved to be crucial in the definition of the morphology of the developed nanocarrier. Therefore, in this work, a step forward to the current gene carrier system will be given by studying the effect of the tunable parameters (incubation temperature and MO content) on the structure of pDNA:DODAB:MO lipoplexes. More importantly, the implications that these tunable parameters could have in terms of lipoplex transfection efficiency will be investigated. Dynamic light scattering (DLS), zeta (ζ) potential, cryo-transmission electron microscopy (cryo-TEM) and ethidium bromide (EtBr) exclusion were used to assess the formation, structure and destabilization of pDNA:DODAB:MO lipoplexes at DODAB molar fractions of (1:1) and above equimolarity (2:1, 4:1) prepared at incubation temperatures from 25 to 50°C. Experimental results indicate that pDNA:DODAB:MOs structure is sensitive to the lipoplex incubation temperature, resulting in particles of distinct size, superficial charge and structure. These variations are also visible on the complexation dynamics of pDNA, and subsequent release upon incubation with the model proteoglycan heparin (HEP), at 25 and 50°C. Increase in temperature leads to re-organization of DODAB and MO molecules within the liposomal formulation, causing a positive charge re-localization in the lipoplex surface, which not only alters its structure but also its transfection efficiency. Altogether, these results confirm that in the DODAB:MO carriers, an increase in the incubation temperature has a similar effect on aggregate morphology as the observed with an increase in MO content. This conclusion is extended to the pDNA:DODAB:MO lipoplexes morphology and subsequent transfection efficiency defining new strategies in lipoplexes preparation that could be used to modulate the properties of other lipid formulations for nonviral gene delivery applications.


Journal of Photochemistry and Photobiology B-biology | 2014

Application of benzo[a]phenoxazinium chlorides in antimicrobial photodynamic therapy of Candida albicans biofilms

Marisa da Conceição Gomes Lopes; Carlos Alves; B. Rama Raju; M. Sameiro T. Gonçalves; Paulo J. G. Coutinho; Mariana Henriques; Isabel Belo

The use of Antimicrobial Photodynamic Therapy (APDT) as a new approach to treat localized Candida infections is an emerging and promising field nowadays. The aim of this study was to verify the efficacy of photodynamic therapy using two new benzo[a]phenoxazinium photosensitizers against Candida albicans biofilms: N-(5-(3-hydroxypropylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSc) and N-(5-(11-hydroxyundecylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSd). The photodynamic activity of dyes against C. albicans biofilms was evaluated by incubating biofilms with dyes in the range of 100-300 μM for 3 or 18 h followed by illumination at 12 or 36 J cm(-2), using a xenon arc lamp (600 ± 2 nm). A total photoinactivation of C. albicans biofilm cells was achieved using 300 μM of FSc with 18 h of incubation, followed by illumination at 36 J cm(-2). Contrarily, FSd had insignificant effect on biofilms inactivation by APDT. The higher uptake of FSc than FSd dye by biofilms during the dark incubation may explain the greater photodynamic effectiveness achieved with FSc. The results obtained stresses out the FSc-mediated APDT potential use to treat C. albicans infections.


Journal of Fluorescence | 2008

Characterization of Monoolein-Based Lipoplexes Using Fluorescence Spectroscopy

J. P. Neves Silva; Paulo J. G. Coutinho; M. E. C. D. Real Oliveira

Lipoplexes are commonly used as delivery systems in vitro and in vivo, the role of a neutral lipid as helper being of extreme importance in these systems. Cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB) with monoolein (MO) as a helper, at different molar ratios (1:2; 1:1 and 1:0.5) were prepared, and subsequently titrated to DNA. The structural and physicochemical properties of the lipid/DNA complexes were assessed by ethidium bromide (EtBr) exclusion, 90° static light scattering (90° SLS) assays and fluorescence resonance energy transfer (FRET). In EtBr exclusion assays, the steady-state fluorescence spectra of EtBr were decomposed into the sum of two lognormal emissions, emanating from two different environments – H2O and DNA, and the effect of charge ratio (+/-) was observed. 90° SLS assays gave an important contribution, detecting size variations in systems with different MO fractions on the lipoplexes. In FRET assays, 2-(3-(diphenylhexatrienyl)propanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (DPH-HPC) was used as donor and EtBr as acceptor. The DNA component previously calculated by EtBr exclusion, was used to determine the energy transfer efficiency, as an indirect measurement of the lipoplexes structural and physicochemical properties. Our results demonstrate that the inclusion of monoolein in the cationic liposomes formulation significantly modifies the rate of DNA complexation, being DODAB:MO (1:1) the system with higher DNA condensation efficiency.


Journal of Fluorescence | 2006

Characterization of TiO2 nanoparticles in langmuir-blodgett films

Paulo J. G. Coutinho; M. Teresa C. M. Barbosa

In this work we have synthesized TiO2 nanoparticles, using either a sol–gel base catalysed process in the interior of CTAB reversed micelles (TiO2 CTAB sol), or the neutralization of a TiO2/H2SO4 solution in the interior of AOT reversed micelles. From the absorption and emission data of the TiO2 nanoparticles it is possible to conclude that in the sol–gel route there remains alkoxide groups in the structure, originating transitions lower than the energy gap of TiO2 semiconductor. These transitions disappear in the neutralization procedure, where the alkoxide groups are absent in the structure. We have assigned the observed indirect and direct optical transitions according to the anatase band structure. TiO2 Langmuir-Blodgett (LB) films were prepared either by direct deposition of titanium isopropoxide or by deposition of the TiO2 CTAB sol. These films showed photoluminescence, which was attributed to band-gap emission and to surface recombination of defect states.


Ultrasonics Sonochemistry | 2014

Ultrasound promoted synthesis of Nile Blue derivatives.

B. Rama Raju; Diogo Sampaio; Maria Manuela Silva; Paulo J. G. Coutinho; M. Sameiro T. Gonçalves

Ultrasound irradiation was used for the first time towards the synthesis of new Nile Blue related benzo[a]phenoxazinium chlorides possessing isopentylamino, (2-cyclohexylethyl)amino and phenethylamino groups at 5-position of the heterocyclic system. The efficacy of sonochemistry was investigated with some of our earlier reported synthesis of benzo[a]phenoxazinium chlorides. This newer protocol proved competent in terms of reaction times and enhanced yields. Photophysical studies carried out in ethanol, water and simulated physiological conditions, revealed that emission maxima occurred in the range 644-656 nm, with high fluorescent quantum yields. Other attractive feature exhibited by these materials includes good thermal stability. These properties might be useful in the development of fluorescent probes for biotechnology.


Biochimica et Biophysica Acta | 2014

Structural dynamics and physicochemical properties of pDNA/DODAB:MO lipoplexes: effect of pH and anionic lipids in inverted non-lamellar phases versus lamellar phases.

J. P. Neves Silva; Isabel Oliveira; A.C.N. Oliveira; M. Lúcio; Andreia C. Gomes; Paulo J. G. Coutinho; M. E. C. D. Real Oliveira

Dioctadecyldimethylammonium bromide (DODAB):Monoolein (MO) lipoplexes have mainly been studied within the range of high molar ratios of DODAB, with noticeable transfection efficiencies in the Human Embryonic Kidney (HEK, a.k.a. 293T) cell line. In this work, we intend to study the effect of high MO content on the structure and physicochemical properties of pDNA/DODAB:MO lipoplexes to achieve some correlation with their transfection efficiency. Static/Dynamic Light Scattering and Cryo-TEM imaging were used to characterize the size/morphology of DNA/DODAB:MO lipoplexes at different DODAB:MO contents (2:1, 1:1, 1:2) and charge ratios (CRs) (+/-). Nile Red fluorescence emission was performed to detect changes in microviscosity, hydration and polarity of DNA/DODAB:MO systems. Lipoplexes stability at physiological pH values and in the presence of anionic lipids was evaluated by Förster Resonance Energy Transfer (FRET). Physicochemical/structural data were complemented with transfection studies in HEK cells using the β-galactosidase reporter gene activity assay. This work reports the coexistence of multilamellar and non-lamellar inverted phases in MO-richer lipoplexes (DODAB:MO 1:2 and 1:4), leading to transfection efficiencies comparable to those of multilamellar (DODAB-richer) lipoplexes, but at higher charge ratios [CR (+/-)=6.0] and without dose-effect response. These results may be related to the structural changes of lipoplexes promoted by high MO content.


Materials | 2011

Synthesis and Characterization of Self-Assembled Nanogels Made of Pullulan

Sílvia A. Ferreira; Paulo J. G. Coutinho; F. M. Gama

Self-assembled nanogels made of hydrophobized pullulan were obtained using a versatile, simple, reproducible and low-cost method. In a first reaction pullulan was modified with hydroxyethyl methacrylate or vinyl methacrylate, further modified in the second step with hydrophobic 1-hexadecanethiol, resulting as an amphiphilic material, which self-assembles in water via the hydrophobic interaction among alkyl chains. Structural features, size, shape, surface charge and stability of the nanogels were studied using hydrogen nuclear magnetic resonance, fluorescence spectroscopy, cryo-field emission scanning electron microscopy and dynamic light scattering. Above the critical aggregation concentration spherical polydisperse macromolecular micelles revealed long-term colloidal stability in aqueous medium, with a nearly neutral negative surface charge and mean hydrodynamic diameter in the range 100–400 nm, depending on the polymer degree of substitution. Good size stability was observed when nanogels were exposed to potential destabilizing pH conditions. While the size stability of the nanogel made of pullulan with vinyl methacrylate and more hydrophobic chains grafted was affected by the ionic strength and urea, nanogel made of pullulan with hydroxyethyl methacrylate and fewer hydrophobic chains grafted remained stable.

Collaboration


Dive into the Paulo J. G. Coutinho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

João Araújo

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ricardo C. Calhelha

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge