Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Hilda Ye is active.

Publication


Featured researches published by B. Hilda Ye.


Nature Immunology | 2000

BCL-6 regulates chemokine gene transcription in macrophages.

Lisa M. Toney; Giorgio Cattoretti; Jennifer A. Graf; Taha Merghoub; Pier Paolo Pandolfi; Riccardo Dalla-Favera; B. Hilda Ye; Alexander L. Dent

The transcriptional repressor protein BCL-6, implicated in the pathogenesis of B cell lymphoma, regulates lymphocyte differentiation and inflammation. We investigated the mechanism for the T helper cell subset 2 (TH2)-type inflammation that occurs in BCL-6−/− mice. Using chimeric mice we found that the TH2-type inflammation is dependent upon nonlymphoid cells. We identified three chemokines, MCP-1, MCP-3 and MRP-1, which are negatively regulated by BCL-6 in macrophages. Promoter analysis revealed that BCL-6 is a potent repressor of MCP-1 transcription. Our results provide a mechanism for the regulation of TH2-type inflammation by BCL-6 and link TH2 differentiation to innate immunity.


Nature | 2011

BCL6 enables Ph + acute lymphoblastic leukaemia cells to survive BCR–ABL1 kinase inhibition

Cihangir Duy; Christian Hurtz; Seyedmehdi Shojaee; Leandro Cerchietti; Huimin Geng; Srividya Swaminathan; Lars Klemm; Soo-Mi Kweon; Rahul Nahar; Melanie Braig; Eugene Park; Yong-Mi Kim; Wolf-Karsten Hofmann; Sebastian Herzog; Hassan Jumaa; H. Phillip Koeffler; J. Jessica Yu; Nora Heisterkamp; Thomas G. Graeber; Hong L Wu; B. Hilda Ye; Ari Melnick; Markus Müschen

Tyrosine kinase inhibitors (TKIs) are widely used to treat patients with leukaemia driven by BCR–ABL1 (ref. 1) and other oncogenic tyrosine kinases. Recent efforts have focused on developing more potent TKIs that also inhibit mutant tyrosine kinases. However, even effective TKIs typically fail to eradicate leukaemia-initiating cells (LICs), which often cause recurrence of leukaemia after initially successful treatment. Here we report the discovery of a novel mechanism of drug resistance, which is based on protective feedback signalling of leukaemia cells in response to treatment with TKI. We identify BCL6 as a central component of this drug-resistance pathway and demonstrate that targeted inhibition of BCL6 leads to eradication of drug-resistant and leukaemia-initiating subclones.


Journal of Experimental Medicine | 2011

BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia

Christian Hurtz; Katerina Hatzi; Leandro Cerchietti; Melanie Braig; Eugene Park; Yong Mi Kim; Sebastian Herzog; Parham Ramezani-Rad; Hassan Jumaa; Martin C. Müller; Wolf K. Hofmann; Andreas Hochhaus; B. Hilda Ye; Anupriya Agarwal; Brian J. Druker; Neil P. Shah; Ari Melnick; Markus Müschen

Chronic myeloid leukemia (CML) is induced by the oncogenic BCR-ABL1 tyrosine kinase and can be effectively treated for many years with tyrosine kinase inhibitors (TKIs). However, unless CML patients receive life-long TKI treatment, leukemia will eventually recur; this is attributed to the failure of TKI treatment to eradicate leukemia-initiating cells (LICs). Recent work demonstrated that FoxO factors are critical for maintenance of CML-initiating cells; however, the mechanism of FoxO-dependent leukemia initiation remained elusive. Here, we identified the BCL6 protooncogene as a critical effector downstream of FoxO in self-renewal signaling of CML-initiating cells. BCL6 represses Arf and p53 in CML cells and is required for colony formation and initiation of leukemia. Importantly, peptide inhibition of BCL6 in human CML cells compromises colony formation and leukemia initiation in transplant recipients and selectively eradicates CD34+ CD38− LICs in patient-derived CML samples. These findings suggest that pharmacological inhibition of BCL6 may represent a novel strategy to eradicate LICs in CML. Clinical validation of this concept could limit the duration of TKI treatment in CML patients, which is currently life-long, and substantially decrease the risk of blast crisis transformation.


Blood | 2012

Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations

Britta Will; Li Zhou; Thomas O. Vogler; Susanna Ben-Neriah; Carolina Schinke; Roni Tamari; Yiting Yu; Tushar D. Bhagat; Sanchari Bhattacharyya; Laura Barreyro; Christoph Heuck; Yonkai Mo; Samir Parekh; Christine McMahon; Andrea Pellagatti; Jacqueline Boultwood; Cristina Montagna; Lewis B. Silverman; Jaroslaw P. Maciejewski; John M. Greally; B. Hilda Ye; Alan F. List; Christian Steidl; Ulrich Steidl; Amit Verma

Even though hematopoietic stem cell (HSC) dysfunction is presumed in myelodysplastic syndrome (MDS), the exact nature of quantitative and qualitative alterations is unknown. We conducted a study of phenotypic and molecular alterations in highly fractionated stem and progenitor populations in a variety of MDS subtypes. We observed an expansion of the phenotypically primitive long-term HSCs (lineage(-)/CD34(+)/CD38(-)/CD90(+)) in MDS, which was most pronounced in higher-risk cases. These MDS HSCs demonstrated dysplastic clonogenic activity. Examination of progenitors revealed that lower-risk MDS is characterized by expansion of phenotypic common myeloid progenitors, whereas higher-risk cases revealed expansion of granulocyte-monocyte progenitors. Genome-wide analysis of sorted MDS HSCs revealed widespread methylomic and transcriptomic alterations. STAT3 was an aberrantly hypomethylated and overexpressed target that was validated in an independent cohort and found to be functionally relevant in MDS HSCs. FISH analysis demonstrated that a very high percentage of MDS HSC (92% ± 4%) carry cytogenetic abnormalities. Longitudinal analysis in a patient treated with 5-azacytidine revealed that karyotypically abnormal HSCs persist even during complete morphologic remission and that expansion of clonotypic HSCs precedes clinical relapse. This study demonstrates that stem and progenitor cells in MDS are characterized by stage-specific expansions and contain epigenetic and genetic alterations.


Journal of Experimental Medicine | 2010

BCL6 is critical for the development of a diverse primary B cell repertoire

Cihangir Duy; J. Jessica Yu; Rahul Nahar; Srividya Swaminathan; Soo Mi Kweon; Jose M. Polo; Ester Valls; Lars Klemm; Seyedmehdi Shojaee; Leandro Cerchietti; Wolfgang Schuh; Hans-Martin Jäck; Christian Hurtz; Parham Ramezani-Rad; Sebastian Herzog; Hassan Jumaa; H. Phillip Koeffler; Ignacio Moreno de Alborán; Ari Melnick; B. Hilda Ye; Markus Müschen

BCL6 protects germinal center (GC) B cells against DNA damage–induced apoptosis during somatic hypermutation and class-switch recombination. Although expression of BCL6 was not found in early IL-7–dependent B cell precursors, we report that IL-7Rα–Stat5 signaling negatively regulates BCL6. Upon productive VH-DJH gene rearrangement and expression of a μ heavy chain, however, activation of pre–B cell receptor signaling strongly induces BCL6 expression, whereas IL-7Rα–Stat5 signaling is attenuated. At the transition from IL-7–dependent to –independent stages of B cell development, BCL6 is activated, reaches expression levels resembling those in GC B cells, and protects pre–B cells from DNA damage–induced apoptosis during immunoglobulin (Ig) light chain gene recombination. In the absence of BCL6, DNA breaks during Ig light chain gene rearrangement lead to excessive up-regulation of Arf and p53. As a consequence, the pool of new bone marrow immature B cells is markedly reduced in size and clonal diversity. We conclude that negative regulation of Arf by BCL6 is required for pre–B cell self-renewal and the formation of a diverse polyclonal B cell repertoire.


Journal of Immunology | 2013

IL-21 and CD40L Synergistically Promote Plasma Cell Differentiation through Upregulation of Blimp-1 in Human B Cells

B. Belinda Ding; Enguang Bi; Hongshan Chen; J. Jessica Yu; B. Hilda Ye

After undergoing Ig somatic hypermutation and Ag selection, germinal center (GC) B cells terminally differentiate into either memory or plasma cells (PCs). It is known that the CD40L and IL-21/STAT3 signaling pathways play critical roles in this process, yet it is unclear how the B cell transcription program interprets and integrates these two types of T cell–derived signals. In this study, we characterized the role of STAT3 in the GC-associated PC differentiation using purified human tonsillar GC B cells and a GC B cell-like cell line. When primary GC B cells were cultured under PC differentiation condition, STAT3 inhibition by AG490 prevented the transition from GC centrocytes to preplasmablast, suggesting that STAT3 is required for the initiation of PC development. In a GC B cell-like human B cell line, although IL-21 alone can induce low-level Blimp-1 expression, maximum Blimp-1 upregulation and optimal PC differentiation required both IL-21 and CD40L. CD40L, although having no effect on Blimp-1 as a single agent, greatly augmented the amplitude and duration of IL-21–triggered Jak-STAT3 signaling. In the human PRDM1 locus, CD40L treatment enhanced the ability of STAT3 to upregulate Blimp-1 by removing BCL6, a potent inhibitor of Blimp-1 expression, from a shared BCL6/STAT3 site in intron 3. Thus, IL-21 and CD40L collaborate through at least two distinct mechanisms to synergistically promote Blimp-1 activation and PC differentiation.


Journal of Immunology | 2005

BCL-6 Negatively Regulates Expression of the NF-κB1 p105/p50 Subunit

Zhiping Li; Xing Wang; Raymond Yu; B. Belinda Ding; J. Jessica Yu; Xu Ming Dai; Akira Naganuma; E. Richard Stanley; B. Hilda Ye

BCL-6 is a transcription repressor frequently deregulated in non-Hodgkin’s B cell lymphomas. Its activity is also critical to germinal center development and balanced Th1/Th2 differentiation. Previous studies have suggested that NF-κB activity is suppressed in germinal center and lymphoma B cells that express high levels of BCL-6, and yet the reason for this is unknown. We report in this study that BCL-6 can bind to three sequence motifs in the 5′ regulatory region of NF-κB1 in vitro and in vivo, and repress NF-κB1 transcription both in reporter assays and in lymphoma B cell lines. BCL-6−/− mice further confirm the biological relevance of BCL-6-dependent regulation of NF-κB1 because BCL-6 inactivation caused notable increase in p105/p50 proteins in several cell types. Among these, BCL-6−/− macrophage cell lines displayed a hyperproliferation phenotype that can be reversed by NF-κB inhibitors, e.g., N-tosyl-l-phenylalanine chloromethyl ketone and SN50, a result that is consistent with increased nuclear κB-binding activity of p50 homodimer and p50/p65 heterodimer. Our results demonstrate that BCL-6 can negatively regulate NF-κB1 expression, thereby inhibiting NF-κB-mediated cellular functions.


Cancer Cell | 2015

Self-Enforcing Feedback Activation between BCL6 and Pre-B Cell Receptor Signaling Defines a Distinct Subtype of Acute Lymphoblastic Leukemia

Huimin Geng; Christian Hurtz; Kyle Lenz; Zhengshan Chen; Dirk Baumjohann; Sarah K. Thompson; Natalya A. Goloviznina; Wei Yi Chen; Jianya Huan; Dorian LaTocha; Erica Ballabio; Gang Xiao; Jae-Woong Lee; Anne Deucher; Zhongxia Qi; Eugene Park; Chuanxin Huang; Rahul Nahar; Soo Mi Kweon; Seyedmehdi Shojaee; Lai N. Chan; Jingwei Yu; Steven M. Kornblau; Janetta Jacoba Bijl; B. Hilda Ye; K. Mark Ansel; Elisabeth Paietta; Ari Melnick; Stephen P. Hunger; Peter Kurre

Studying 830 pre-B ALL cases from four clinical trials, we found that human ALL can be divided into two fundamentally distinct subtypes based on pre-BCR function. While absent in the majority of ALL cases, tonic pre-BCR signaling was found in 112 cases (13.5%). In these cases, tonic pre-BCR signaling induced activation of BCL6, which in turn increased pre-BCR signaling output at the transcriptional level. Interestingly, inhibition of pre-BCR-related tyrosine kinases reduced constitutive BCL6 expression and selectively killed patient-derived pre-BCR(+) ALL cells. These findings identify a genetically and phenotypically distinct subset of human ALL that critically depends on tonic pre-BCR signaling. In vivo treatment studies suggested that pre-BCR tyrosine kinase inhibitors are useful for the treatment of patients with pre-BCR(+) ALL.


Molecular and Cellular Biology | 2008

CtBP Is an Essential Corepressor for BCL6 Autoregulation

Lourdes Mendez; Jose M. Polo; J. Jessica Yu; Melissa Krupski; B. Belinda Ding; Ari Melnick; B. Hilda Ye

ABSTRACT The transcription repressor BCL6 plays an essential role in the formation and function of germinal centers (GCs). While normal B cells promptly shut off BCL6 when they exit the GC, many GC-derived B-cell lymphomas sustain BCL6 expression through chromosomal translocations and activating mutations. We have previously shown that a common effect of lymphoma-associated BCL6 gene alterations is to bypass a negative autoregulatory loop that controls its transcription. In this study, we report that BCL6 autoregulation is independent of several known corepressor complexes including silencing mediator for retinoid and thyroid hormone receptors, nuclear receptor coreceptor, BCL6 corepressor, and MTA3/NuRD. Furthermore, we show that BCL6 can interact with the CtBP (C-terminal binding protein) corepressor both in vitro and in vivo and that CtBP is recruited by BCL6 to its 5′ regulatory region. In lymphoma cell lines carrying BCL6 translocations, small interfering RNA-mediated CtBP knock-down selectively relieved the previously silenced wild-type BCL6 allele but not the translocated alleles, which are driven by heterologous promoters. These results demonstrate that CtBP is a novel BCL6 corepressor and suggest that a unique corepressor requirement for BCL6 autoregulation may allow GC B cells to differentially control the expression of BCL6 and other BCL6 target genes in response to environmental stimuli during the GC stage of B cell development.


Journal of Cell Science | 2005

BCL6 suppresses RhoA activity to alter macrophage morphology and motility

Fiona J. Pixley; Ying Xiong; Raymond Yu; Erik Sahai; E. Richard Stanley; B. Hilda Ye

BCL6 is a potent transcriptional repressor that plays important roles in germinal center formation, T helper cell differentiation and lymphomagenesis and regulates expression of several chemokine genes in macrophages. In a further investigation of its role in macrophages, we show that BCL6 inactivation in primary bone marrow-derived macrophages leads to decreased polarization, motility and cell spreading accompanied by an increase in peripheral focal complexes, anchored F-actin bundles and cortical F-actin density. These changes were associated with excess RhoA activation. C3 transferase inhibition of RhoA activity reverted the adhesion structure phenotype, which was not affected by Rho kinase inhibitors, suggesting that other downstream effectors of Rho maintain this Bcl6–/– phenotype. Excess RhoA activation in BCL6-deficient macrophages is associated with a decrease in the p120RasGAP (RASA1)-mediated translocation of p190RhoGAP (GRLF1) to active RhoA at the plasma membrane and a reduction in cell surface expression of the CSF1R that has been reported to recruit RasGAP to the plasma membrane. Reconstitution of BCL6 expression in Bcl6–/– macrophages results in complete reversion of the morphological phenotype and a significant increase in cell surface CSF1R expression whereas overexpression of the CSF1R corrects the polarization and adhesion structure defects. These results demonstrate that BCL6 suppresses RhoA activity, largely through upregulation of surface CSF1R expression, to modulate cytoskeletal and adhesion structures and increase the motility of macrophages.

Collaboration


Dive into the B. Hilda Ye's collaboration.

Top Co-Authors

Avatar

J. Jessica Yu

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cihangir Duy

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rahul Nahar

University of California

View shared research outputs
Top Co-Authors

Avatar

Samir Parekh

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge