Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. J. Ding is active.

Publication


Featured researches published by B. J. Ding.


Nuclear Fusion | 2013

Experimental investigations of LHW?plasma coupling and current drive related to achieving H-mode plasmas in EAST

B. J. Ding; E.H. Kong; M. H. Li; Lei Zhang; W. Wei; M. Wang; Handong Xu; Y. C. Li; Bili Ling; Qing Zang; Gang Xu; Xiang Han; H.L. Zhao; Ling Zhang; L.M. Zhao; Huaichuan Hu; Yitao Yang; L. Liu; A. Ekedahl; M. Goniche; R. Cesario; Y. Peysson; J. Decker; V. Basiuk; P. Huynh; J. Artaud; F. Imbeaux; Jiafang Shan; Fukun Liu; Yanping Zhao

Aimed at high-confinement (H-mode) plasmas in the Experimental Advanced Superconducting Tokamak (EAST), the effect of local gas puffing from electron and ion sides of a lower hybrid wave (LHW) antenna on LHW?plasma coupling and high-density experiments with lower hybrid current drive (LHCD) are investigated in EAST. Experimental results show that gas puffing from the electron side is more favourable to improve coupling compared with gas puffing from the ion side. Investigations indicate that LHW?plasma coupling without gas puffing is affected by the density near the LHW grill (grill density), hence leading to multi-transition of low?high?low (L?H?L) confinement, with a correspondingly periodic characteristic behaviour in the plasma radiation. High-density experiments with LHCD suggest that strong lithiation gives a significant improvement on current drive efficiency in the higher density region than 2???1019?m?3. Studies indicate that the sharp decrease in current drive efficiency is mainly correlated with parametric decay instability.Using lithium coating and gas puffing from the electron side of the LHW antenna, an H-mode plasma is obtained by LHCD in a wide range of parameters, whether LHW is deposited inside the half-minor radius or not, implying that a central and large driven current is not a necessary condition for the H-mode plasma. H-mode is investigated with CRONOS.


Nuclear Fusion | 1999

Lower hybrid current drive experiments and improved performance on the HT-7 superconducting tokamak

Guangli Kuang; Yuexiou Liu; Jiafang Shan; W. Xu; Xiangqin Zhang; Dengcheng Liu; Fukun Liu; Yubao Zhu; Cheng Zhang; Guanghua Zheng; J.H. Wu; Jianan Lin; Bojiang Ding; Handong Xu; Yude Fang; Jiangang Li; Jiarong Luo; Xiaodong Zhang; Baonian Wan; Qingchu Zhao; Jianshan Mao; X. Gao; Shouyin Zhang; Chengfu Li; Xuemao Gu; Pinjian Qing; Hengyu Fan; S. Liu; Bili Ling; B. J. Ding

The feedback control system to control plasma current and position on the HT-7 superconducting tokamak was greatly improved in early 1998. Lower hybrid current drive (LHCD) experiments with the improved control system were performed to sustain long pulse discharges and to improve plasma confinement. Partial non-inductive current drive and full non-inductive current drive for several seconds by means of LHCD were demonstrated. It was observed that plasma confinement could be considerably improved by LHCD. Experimental evidence suggests that this improvement during the LHCD phase could be due to the modification of the current profile in the outer region of the plasma. MHD modes (especially m = 2) seem unstable with such a current profile. The EFIT code was modified for the reconstruction of the magnetic surfaces in HT-7 and a test computation was performed.


Plasma Physics and Controlled Fusion | 2006

Dynamics of runaway electrons in lower hybrid current drive plasmas in the HT-7 tokamak

Z. Y. Chen; Baonian Wan; S. Y. Lin; Yuejiang Shi; Liqun Hu; J Younis; X.Z. Gong; Jiafang Shan; Fukun Liu; B. J. Ding; X. Gao; Ht Team

In lower hybrid current drive (LHCD) plasmas with non-zero loop voltage, the fast electron tail can act as a seed population of runaways. The runaways are found to be enhanced in the presence of lower hybrid (LH) waves when the fast electron tail extends above the critical velocity for electrons to run away. In runaway discharges, the LH waves may suppress runaway electrons due to the drop in the electric field linked to the non-inductive current drive. In this paper, the behaviour of runaway electrons in an extensive range of LHCD plasmas is presented.


Nuclear Fusion | 2015

First results of LHCD experiments with 4.6 GHz system toward steady-state plasma in EAST

Fukun Liu; B. J. Ding; J.G. Li; Baonian Wan; Jiafang Shan; M. Wang; L. Liu; L.M. Zhao; M. H. Li; Y. C. Li; Ying Yang; Z.G. Wu; J.Q. Feng; Huaichuan Hu; H. Jia; Y.Y. Huang; W. Wei; M. Cheng; Liuwei Xu; Qing Zang; B. Lyu; S. Y. Lin; Yanmin Duan; J.H. Wu; Y. Peysson; J. Decker; J. Hillairet; A. Ekedahl; Z.P. Luo; J. Qian

A 4.6 GHz lower-hybrid current drive (LHCD) system has been firstly commissioned in EAST in the 2014 campaign. The first LHCD results with 4.6 GHz show that LHW can be coupled to plasma with a low reflection coefficient, drive plasma current and plasma rotation, modify the plasma current profile, and heat plasma effectively. By means of configuration optimization and local gas puffing near the LHW antenna, good LHW–plasma coupling with a reflection coefficient less than 5% is obtained. The maximum LHW power coupled to plasma is up to 3.5 MW. The current drive (CD) efficiency is up to 1.1 × 1019 A m−2 W−1 and the central electron temperature is above 4 keV, suggesting that LH power could be mainly deposited in the core region, which is in agreement with code simulation. Experiments show that the current profile is effectively modified and toroidal rotation in the co-current direction is driven by the LHCD. Also, the CD efficiency and current profile depend on the launched wave spectrum, suggesting the possibility of controlling the current profile by changing the phase difference. Repeatable H-mode plasma is obtained by either the 4.6 GHz LHCD system alone, or together with a 2.45 GHz LHCD system, the NBI (neutral beam injection) system. The different ELM features of H-mode between the different heating methods are under investigation.


Nuclear Fusion | 2015

Investigations of LHW-plasma coupling and current drive at high density related to H-mode experiments in EAST

B. J. Ding; Y. C. Li; L. Zhang; M. H. Li; W. Wei; E.H. Kong; M. Wang; Handong Xu; Shouxin Wang; Guosheng Xu; L.M. Zhao; H C Hu; H. Jia; M. Cheng; Yitao Yang; L. Liu; H.L. Zhao; Y. Peysson; J. Decker; M. Goniche; L. Amicucci; R. Cesario; A. A. Tuccillo; S. G. Baek; R.R. Parker; P.T. Bonoli; F. Paoletti; C. Yang; Jiafang Shan; Fukun Liu

Two important issues in achieving lower hybrid current drive (LHCD) high confinement plasma in EAST are to improve lower hybrid wave (LHW)-plasma coupling and to drive the plasma current at a high density. Studies in different configurations with different directions of toroidal magnetic field (Bt) show that the density near the antenna is affected by both the radial electric field induced by plasma without a LHW (Er_plasma) in the scrape off layer (SOL), and the radial electric field induced by LHW power (Er_LH) near the grill. Investigations indicate that Er × Bt in the SOL leads to a different effect of configuration on the LHW-plasma coupling and Er_LH × Bt accounts for the asymmetric density behaviour in the SOL observed in the experiments, where Er is the total radial electric field in the SOL. Modelling of parametric instability (PI), collisional absorption (CA) and scattering from density fluctuations (SDF) in the edge region, performed considering the parameters of high density LHCD experiments in EAST, has shown that these mechanisms could be responsible for the low current drive (CD) efficiency at high density. Radiofrequency probe spectra, useful for documenting PI occurrence, show sidebands whose amplitude in the case of the lithiated vacuum chamber is smaller than in the case of poor lithiation, consistently with growth rates from PI modeling of the respective reference discharges. Since strong lithiation is also expected to diminish the parasitic effect on the LHCD of the remaining possible mechanisms, this appears to be a useful method for improving LHCD efficiency at a high density.


Physics of Plasmas | 2016

Lower hybrid current drive experiments with different launched wave frequencies in the EAST tokamak

M. H. Li; B. J. Ding; Fukun Liu; Jiafang Shan; M. Wang; Handong Xu; Li Liu; H C Hu; Xiaotao Zhang; Y. C. Li; W. Wei; Z. G. Wu; W. D. Ma; Y. Yang; J. Q. Feng; H. Jia; Xin Wang; D. J. Wu; M. Chen; L. Xu; J. W. Wang; S. Y. Lin; J. Z. Zhang; J. Qian; Zhengping Luo; Qing Zang; Xiao Feng Han; H.L. Zhao; Y. Peysson; J. Decker

EAST has been equipped with two high power lower hybrid current drive (LHCD) systems with operating frequencies of 2.45 GHz and 4.6 GHz. Comparative LHCD experiments with the two different frequencies were performed in the same conditions of plasma for the first time. It was found that current drive (CD) efficiency and plasma heating effect are much better for 4.6 GHz LH waves than for the one with 2.45 GHz. High confinement mode (H-mode) discharges with 4.6 GHz LHCD as the sole auxiliary heating source have been obtained in EAST and the confinement is higher with respect to that produced previously by 2.45 GHz. A combination of ray-tracing and Fokker-Planck calculations by using the C3PO/LUKE codes was performed in order to explain the different experimental observations between the two waves. In addition, the frequency spectral broadening of the two LH wave operating frequencies was surveyed by using a radio frequency probe.


Nuclear Fusion | 2012

Analysis of electron heat transport with off-axis modulated ECRH in Tore Supra

Sd Song; Xl Zou; G. Giruzzi; Ww Xiao; Xt Ding; B. J. Ding; J. L. Segui; D Elbeze; F Clairet; C Fenzi; T Aniel; Basiuk; F Bouquey; R Magne; E Corbel

Experiments to study inward heat transport phenomena have been performed in the Tore Supra tokamak with off-axis electron cyclotron resonance heating (ECRH). Both power balance and perturbation transport analysis have been done for low-frequency (1 Hz) ECRH modulation experiments. Heat diffusivity and heat pinch have been separately determined by fitting the experimental data of the amplitude and phase of the Fourier transform of the modulated temperature with a linear transport model including convection term. Comparison with the critical gradient model has shown that the heat pinch previously obtained could include a pseudo-pinch due to the non-linearity of the diffusivity and an additional non-diffusive heat pinch. The pinch effect is reduced for higher densities.


Plasma Physics and Controlled Fusion | 2014

Modelling of the EAST lower-hybrid current drive experiment using GENRAY/CQL3D and TORLH/CQL3D

C. Yang; P.T. Bonoli; John Wright; B. J. Ding; R.R. Parker; S Shiraiwa; M. H. Li

The coupled GENRAY-CQL3D code has been used to do systematic ray-tracing and Fokker–Planck analysis for EAST Lower Hybrid wave Current Drive (LHCD) experiments. Despite being in the weak absorption regime, the experimental level of LH current drive is successfully simulated, by taking into account the variations in the parallel wavenumber due to the toroidal effect. The effect of radial transport of the fast LH electrons in EAST has also been studied, which shows that a modest amount of radial transport diffusion can redistribute the fast LH current significantly. Taking advantage of the new capability in GENRAY, the actual Scrape Off Layer (SOL) model with magnetic field, density, temperature, and geometry is included in the simulation for both the lower and the higher density cases, so that the collisional losses of Lower Hybrid Wave (LHW) power in the SOL has been accounted for, which together with fast electron losses can reproduce the LHCD experimental observations in different discharges of EAST. We have also analyzed EAST discharges where there is a significant ohmic contribution to the total current, and good agreement with experiment in terms of total current has been obtained. Also, the full-wave code TORLH has been used for the simulation of the LH physics in the EAST, including full-wave effects such as diffraction and focusing which may also play an important role in bridging the spectral gap. The comparisons between the GENRAY and the TORLH codes are done for both the Maxwellian and the quasi-linear electron Landau damping cases. These simulations represent an important addition to the validation studies of the GENRAY-CQL3D and TORLH models being used in weak absorption scenarios of tokamaks with large aspect ratio.


Physics of Plasmas | 2014

Study on lower hybrid current drive efficiency at high density towards long-pulse regimes in Experimental Advanced Superconducting Tokamak

M. H. Li; B. J. Ding; J. Z. Zhang; Kaifu Gan; H. Q. Wang; Y. Peysson; J. Decker; L. Zhang; W. Wei; Y. C. Li; Z. G. Wu; W. D. Ma; H. Jia; M. Chen; Y. Yang; J. Q. Feng; M. Wang; Handong Xu; Jiafang Shan; Fukun Liu; East Team

Significant progress on both L- and H-mode long-pulse discharges has been made recently in Experimental Advanced Superconducting Tokamak (EAST) with lower hybrid current drive (LHCD) [J. Li et al., Nature Phys. 9, 817 (2013) And B. N. Wan et al., Nucl. Fusion 53, 104006 (2013).]. In this paper, LHCD experiments at high density in L-mode plasmas have been investigated in order to explore possible methods of improving current drive (CD) efficiency, thus to extend the operational space in long-pulse and high performance plasma regime. It is observed that the normalized bremsstrahlung emission falls much more steeply than 1/ne_av (line-averaged density) above ne_av = 2.2 × 1019 m−3 indicating anomalous loss of CD efficiency. A large broadening of the operating line frequency (f = 2.45 GHz), measured by a radio frequency (RF) probe located outside the EAST vacuum vessel, is generally observed during high density cases, which is found to be one of the physical mechanisms resulting in the unfavorable CD efficien...


Physics of Plasmas | 2013

Effect of gas puffing from different side on lower hybrid wave-plasma coupling in experimental advanced superconductive tokamak

B. J. Ding; E. H. Kong; T. Zhang; A. Ekedahl; M. H. Li; L. Zhang; W. Wei; Y. C. Li; J.H. Wu; G. Xu; H.L. Zhao; M. Wang; X.Z. Gong; Jiafang Shan; Fukun Liu; East Team

Effect of gas puffing from electron-side and ion-side on lower hybrid wave (LHW)-plasma is investigated in experimental advanced superconductive tokamak for the first time. Experimental results with different gas flow rates show that electron density at the grill is higher in the case of gas puffing from electron-side; consequently, a lower reflection coefficient is observed, suggesting better effect of puffing from electron-side on LHW-plasma. The difference in edge density between electron- and ion-side cases suggests that local ionization of puffed gas plays a dominant role in affecting the density at the grill due to different movement direction of ionized electrons and that part of gas has been locally ionized near the gas pipe before diffusing into the grill region. Such difference could be enlarged and important in ITER due to the improvement of plasma parameters and LHW power.

Collaboration


Dive into the B. J. Ding's collaboration.

Top Co-Authors

Avatar

Jiafang Shan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fukun Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. H. Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Y. C. Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

X.Z. Gong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

W. Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Handong Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

J.G. Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

L. Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge