Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Jeanrenaud is active.

Publication


Featured researches published by B. Jeanrenaud.


Diabetes | 1995

The ob Gene and Insulin: A Relationship Leading to Clues to the Understanding of Obesity

Isabelle Cusin; Amanda Sainsbury; Patrick Doyle; Françoise Rohner-Jeanrenaud; B. Jeanrenaud

Obesity and non-insulin-dependent diabetes are estimated to affect millions of people in the world. This pathology is multifactorial, comprising complex interactions of genetic and environmental factors and lacking a specific therapy. Great interest arose from the recent discovery of the ob gene expressed only in adipose tissue and coding for a protein that appears to regulate adiposity, potentially by acting as a satiety factor. We report here that in normal rats, ob mRNA is respectively up- or downregulated by a rise in insulinemia (induced by 2-day insulin infusion while maintaining euglycemia) or a decrease in insulinemia (induced by a 3-day fast). Our results also show that in genetically obese fa/fa rats studied longitudinally, white adipose tissue ob mRNA levels increase in parallel with early occurringand steadily increasing hyperinsulinemia. This results in adult obese animals having markedly higher ob mRNA levels than age-matched normoinsulinemic lean rats. Furthermore, in adult obese rats, ob mRNA escapes down-regulation as normalization of hyperinsulinemia due to fasting fails to reduce the high ob mRNA levels.


Diabetes | 1997

Glucocorticoids as Counterregulatory Hormones of Leptin: Toward an Understanding of Leptin Resistance

Katerina E. Zakrzewska; Isabelle Cusin; Amanda Sainsbury; F. Rohner-Jeanrenaud; B. Jeanrenaud

The product of the ob gene, leptin, is a hormone secreted by adipose tissue that acts in the hypothalamus to regulate the size of the body fat depot. Its central administration has been shown to decrease food intake and body weight, while favoring energy dissipation. As glucocorticoids are known to play a permissive role in the establishment and maintenance of obesity syndromes in rodents, it was hypothesized that they do so by restraining the effect of leptin. Leptin injected intracerebroventricularly as a bolus of 3 μg in normal rats induced modest reductions in body weight and food intake. In marked contrast, the same dose of leptin had very potent and long-lasting effects in decreasing both body weight and food intake when administered to adrenalectomized rats. Further, glucocorticoid supplementation of adrenalectomized rats dose-dependently inhibited these potent effects of leptin. These data suggest that glucocorticoids play a key inhibitory role in the action of leptin. Under normal conditions, this inhibitory influence of glucocorticoids may prevent lasting hypophagia. In obesity with degrees of hypercorticism, it may contribute to “leptin resistance,” whose etiology is still little understood.


Diabetes | 1996

The Weight-Reducing Effect of an Intracerebroventricular Bolus Injection of Leptin in Genetically Obese fa/fa Rats: Reduced Sensitivity Compared With Lean Animals

Isabelle Cusin; Françoise Rohner-Jeanrenaud; Alain Stricker-Krongrad; B. Jeanrenaud

The effect of different doses of leptin, given as an intracerebroventricular (ICV) bolus, on body weight gain and food intake was investigated during refeeding, following a 24-h fast in lean (FA/fa) rats. It was observed that ICV leptin resulted in a dose-dependent decrease in body weight gain, compared with vehicle injection, a difference that persisted for at least 6 days. This was associated with a transient reduction in food intake over the first 2 days after leptin injection. More importantly, the effect of leptin was also observed in genetically obese fa/fa rats but at the expense of two to ten times higher leptin concentrations, indicating the presence of decreased leptin sensitivity. Furthermore, ICV leptin injections were able to decrease neuropeptide Y (NPY) levels in the arcuate and paraventricular hypothalamic nuclei in both lean and genetically obese fa/fa rats, although a higher leptin dose was again needed in the obese group. These observations provide further evidence for the implication of NPY and leptin in a regulatory loop controlling body homeostasis. This loop is functional in lean and genetically obese fa/fa rats, provided that leptin levels in the central nervous system are high enough in the obese group, in particular. Since human obesity is frequently associated with elevated circulating leptin levels, a state of decreased leptin sensitivity (i.e., leptin resistance), similar to that described here in fa/fa rats, could possibly occur in human syndromes as well.


Diabetologia | 1981

Cephalic phase, reflex insulin secretion. Neuroanatomical and physiological characterization.

H. R. Berthoud; D. A. Bereiter; E. R. Trimble; E. G. Siegel; B. Jeanrenaud

Using chronically catheterized, freely moving male Wistar rats, we have shown that the sweet taste of a saccharin solution reliably triggers a rapid cephalic phase insulin response (CPIR), in the absence of any significant change of glycemia. To establish the neural mediation of this reflex response we used rats that were cured from streptozotocin diabetes by intrahepatic islet-transplantation as a denervated B-cell preparation. The complete lack of any saccharin-induced CPIR in these rats suggests that it is indeed mediated by the peripheral autonomic nervous system, and that the insulin-stimulating gastrointestinal hormones are not involved in this response. It was further found that this reflex insulin secretion is not easily extinguishable and thus might have an unconditioned component. To investigate the central neural pathways involved in this reflex response we used both electrophysiological methods in anesthetized and semi-micro CNS manipulations in freely moving rats. On the basis of our preliminary results, and several reports, using the decerebrate rat preparation for measuring behavioral or saliva secretory oral taste reactivity, it appears that the CPIR might be organized at the brain stem/midbrain level, receiving strong modulatory influences from the diencephalon. But much further work has to be done to establish the central nervous circuitry. Finally, in two experiments, aiming at the question of how important and physiologically relevant the CPIR might be, we found that, on one hand, its lack can result in pathological oral glucose tolerance and on the other hand its exaggeration might contribute to the behavioral reaction to highly palatable sweet food and the resulting development of dietary obesity.SummaryUsing chronically catheterized, freely moving male Wistar rats, we have shown that the sweet taste of a saccharin solution reliably triggers a rapid cephalic phase insulin response (CPIR), in the absence of any significant change of glycemia. To establish the neural mediation of this reflex response we used rats that were cured from streptozotocin diabetes by intrahepatic islet-transplantation as a denervated B-cell preparation. The complete lack of any saccharin-induced CPIR in these rats suggests that it is indeed mediated by the peripheral autonomic nervous system, and that the insulin-stimulating gastrointestinal hormones are not involved in this response. It was further found that this reflex insulin secretion is not easily extinguishable and thus might have an unconditioned component. To investigate the central neural pathways involved in this reflex response we used both electrophysiological methods in anesthetized and semi-micro CNS manipulations in freely moving rats. On the basis of our preliminary results, and several reports, using the decerebrate rat preparation for measuring behavioral or saliva secretory oral taste reactivity, it appears that CPIR might be organized at the brain stem/midbrain level, receiving strong modulatory influences from the diencephalon. But much further work has to be done to establish the central nervous circuitry. Finally, in two experiments, aiming at the question of how important and physiologically relevant the CPIR might be, we found that, on one hand, its lack can result in pathological oral glucose tolerance and on the other hand its exaggeration might contribute to the behavioral reaction to highly palatable sweet food and the resulting development of dietary obesity.


Journal of Clinical Investigation | 1976

Decreased basal, noninsulin-stimulated glucose uptake and metabolism by skeletal soleus muscle isolated from obese-hyperglycemic (ob/ob) mice.

G S Cuendet; E G Loten; B. Jeanrenaud; Albert E. Renold

Insulin resistance of diaphragms of ob/ob mice has been repeatedly demonstrated previously both in vitro and in vivo. In the present study, transport and metabolism of glucose with and without insulin stimulation were compared in a skeletal muscle more likely than diaphragm or heart to be representative of the overall striated muscle mass, i.e. isolated soleus muscle. Compared with soleus muscle from lean controls, unstimulated lactate release in the presence of exogenous glucose was depressed from 16.2 to 12.3 nmol/60 min per mg wet wt in soleus from ob/ob mutants; glycolysis was decreased from 6.6 to 3.7 and [14C]glucose oxidation to 14CO2 from 0.90 to 0.33 nmol glucose/60 min per mg wet wt. Uptake of 2-deoxyglucose (2-DOG), both with and without insulin, was very much less for soleus from ob/ob than from lean mice, at 2-DOG concentrations ranging from 0.1 to 10 mM, and in mice of 6-15 wk. When 2-DOG concentration was 1 mM, its basal uptake was 0.53 nmol/30 min per mg wet wt for soleus of ob/ob as against 0.96 for soleus of lean mice. The absolute increment due to 1 mU/ml insulin was 0.49 in muscle of ob/ob as against 1.21 in that of lean mice. When the resistance to insulin action was decreased by pretreatment in vivo by either streptozotocin injection or fasting, the decreased basal 2-DOG uptake of subsequently isolated soleus muscle was not improved. Inhibition of endogenous oxidation of fatty acids by 2-bromostearate, while greatly increasing 14CO2 production from [14C]glucose, did not affect basal [5-3H]glucose metabolism or 2-DOG uptake. It is suggested that transport and/or phosphorylation of glucose under basal, unstimulated conditions are depressed in soleus muscle of ob/ob mice, whether or not resistance to insulin and hyperinsulinemia are also present. Although the origin of the decreased basal glucose uptake remains unknown it might be related to a similar decrease in basal glucose uptake by ventromedial hypothalamic cells, an event presumably resulting in a tendency to hyperphagia. Decreased basal glucose uptake by soleus muscle of ob/ob mice might explain the hyperglycemia, and hence partly the hyperinsulinemia and excessive fat deposition of those animals.


Diabetologia | 1994

Induction and reversibility of an obesity syndrome by intracerebroventricular neuropeptide Y administration to normal rats

R. Vettor; Nicolas Zarjevski; Isabelle Cusin; Françoise Rohner-Jeanrenaud; B. Jeanrenaud

SummaryIntracerebroventricular neuropeptide Y (NPY) administration to normal rats for 7 days produced a sustained, threefold increase in food intake, resulting in a body weight gain of more than 40 g. Basal plasma insulin and triglyceride levels were increased in NPY-treated compared to vehicle-infused rats by about four- and two-fold, respectively. The glucose utilization index of white adipose tissue, measured by the labelled 2-deoxy-d-glucose technique was four times higher in NPY-treated rats compared to controls. This change was accompanied by an increase in the insulin responsive glucose transporter protein (GLUT 4). In marked contrast, muscle glucose utilization was decreased in NPY-treated compared to vehicle-infused animals. This change was accompanied by an increase in triglyceride content. When NPY-treated rats were prevented from overeating, there was no decrease in muscle glucose uptake, nor was there an increase in muscle triglyceride content. This suggests that muscle insulin resistance of ad libitum-fed NPY-treated rats is due to a glucose-fatty acid (Randle) cycle. When intracerebro-ventricular NPY administration was stopped and rats kept without any treatment for 7 additional days, all the abnormalities brought about by the neuropeptide were normalized. A tonic central effect of NPY is therefore needed to elicit and maintain most of the hormonal and metabolic abnormalities observed in the present study. Such abnormalities are analogous to those seen in the dynamic phase of obesity syndromes in which high hypothalamic NPY levels have been reported.


Diabetes | 1987

Development of Obesity in Zucker Rats: Early Insulin Resistance in Muscles But Normal Sensitivity in White Adipose Tissue

Luc Pénicaud; Pascal Ferré; J. Terretaz; M. F. Kinebanyan; A. Leturque; E. Dore; Jean Girard; B. Jeanrenaud; Luc Picon

Euglycemic-hyperinsulinemic clamps were performed on 4- and 12-wk-old anesthetized lean and obese Zucker rats. During the clamp studies, total glucose production and utilization were assessed with a 3-[3H]glucose perfusion, whereas local glucose utilization was determined by measuring 2-deoxy-1-[3H]glucose 6-phosphate accumulation in various tissues. In the basal state, 4 wk-old obese rats were hyperinsulinemic (159 ± 8 vs. 82 ± 9 μU/ml), whereas glucose turnover rate was similar to that observed in lean rats (14.9 ± 1.9 vs. 12.5 ± 1.9 mg · min−1 · kg−1). Glucose utilization was identical in skeletal muscles, whereas it was increased in white adipose tissue of obese rats (22 ± 4 vs. 8 ± 2 ng · min−1 · mg−1). At plasma insulin level of 500 μU/ml, glucose production was totally suppressed in both groups, whereas overall glucose utilization was slightly less in 4-wk-old obese than in lean rats. This was due to a reduced stimulation of glucose utilization in skeletal muscles and brown adipose tissue. In contrast, glucose utilization in periovarian white adipose tissue was similarly increased in lean and obese rats. For a maximal insulin concentration (1500 μU/ml), all the differences were abolished between lean and obese young Zucker rats. In older (12-wk-old) obese rats, glucose utilization in various tissues was markedly reduced at maximal insulin level compared with that observed in age-matched lean animals. Thus, a decreased insulin sensitivity in skeletal muscles and brown adipose tissue with a normal insulin sensitivity in white adipose tissue could contribute to the development of obesity in young Zucker rats by preferentially channeling glucose toward this tissue.


Diabetologia | 1997

Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia

Amanda Sainsbury; Françoise Rohner-Jeanrenaud; Isabelle Cusin; K. E. Zakrzewska; Philippe A. Halban; R. C. Gaillard; B. Jeanrenaud

SummaryNeuropeptide Y in the hypothalamus is a potent physiological stimulator of feeding, and may contribute to the characteristic metabolic defects of obesity when hypothalamic levels remain chronically elevated. Since corticosterone and insulin are important regulators of fuel metabolism, the longitudinal effects of chronic (6 days) intracerebroventricular infusion of neuropeptide Y in normal rats on the hypothalamo-pituitary-adrenal axis and on insulin secretion were studied. Neuropeptide Y-infused rats were either allowed to eat ad libitum, or were pair-fed with normophagic control rats. Neuropeptide Y increased the basal plasma concentrations of adrenocorticotropic hormone and corticosterone during the first 2 days of its intracerebroventricular infusion and increased cold stress-induced plasma adrenocorticotropic hormone concentrations. After 4-6 days of central neuropeptide Y infusion, however, basal plasma adrenocorticotropic hormone and corticosterone concentrations were no different from control values (except in ad libitum-fed rats in which corticosteronaemia remained elevated), they were unaffected by the stress of cold exposure, and the hypothalamic content of corticotropin-releasing factor immunoreactivity was significantly decreased. A state of hyperinsulinaemia was present throughout the 6 days of intracerebroventricular neuropeptide Y infusion, being more marked in the ad libitum-fed than in the pair-fed group. The proportions of insulin, proinsulin, and conversion intermediates in plasma and pancreas were unchanged. Hyperinsulinaemia of the pair-fed neuropeptide Y-infused rats was accompanied by muscle insulin resistance and white adipose tissue insulin hyperresponsiveness, as assessed by the in vivo uptake of 2-deoxyglucose. Finally, bilateral subdiaphragmatic vagotomy prevented both the basal and the marked glucose-induced hyperinsulinaemia of animals chronically infused with neuropeptide Y, demonstrating that central neuropeptide Y-induced hyperinsulinaemia is mediated by the parasympathetic nervous system.


Diabetes | 1997

Adrenalectomy Prevents the Obesity Syndrome Produced by Chronic Central Neuropeptide Y Infusion in Normal Rats

Amanda Sainsbury; Isabelle Cusin; Françoise Rohner-Jeanrenaud; B. Jeanrenaud

Neuropeptide Y (NPY) in the hypothalamus plays an important role in the regulation of food intake and body weight and seems to be implicated in the etiology of obesity. When intracerebroventricularly (ICV) infused for 6 days in normal rats, NPY resulted in hyperphagia, increased body weight gain, hyperinsulinemia, hypercorticosteronemia, and hypertriglyceridemia compared with vehicle-infused control rats. NPY infusion also resulted in an insulin-resistant state in muscles and in a state of insulin hyperresponsiveness in white adipose tissue, as assessed by the measurement of the in vivo glucose utilization index of these tissues during euglycemic-hyperinsulinemic clamps. All of these hormono-metabolic effects produced by chronic central NPY infusion were completely prevented when rats were adrenalectomized before NPY administration. Adrenalectomy per se had no effect on any of the parameters mentioned above. The levels of mRNA for the obese gene were increased in white adipose tissue after 6 days of ICV NPY infusion in normal rats, and white adipose tissue weight was also increased. These effects of ICV NPY infusion were markedly decreased by prior adrenalectomy, although NPY infusion was able to somewhat enhance the low white adipose tissue obese mRNA levels and tissue weight of adrenalectomized rats. In conclusion, intact adrenal glands, and probably circulating corticosterone in particular, are necessary for the establishment of most of the hormonal and metabolic effects induced by chronic ICV infusion of NPY in normal rats.


Diabetes | 1994

Intracerebroventricular Administration of Neuropeptide Y to Normal Rats Has Divergent Effects on Glucose Utilization by Adipose Tissue and Skeletal Muscle

Nicolas Zarjevski; Isabelle Cusin; Roberto Vettor; Françise Rohner-Jeanrenaud; B. Jeanrenaud

Given that several genetically obese rodents characterized by hyperphagia, hyperinsulinemia, and insulin resistance have increased hypothalamic neuropeptide Y (NPY) mRNA and peptide content, the impact of NPY administered intracerebroventricularly (i.c.v.) for 7 days to normal, awake rats was investigated. NPY produced marked hyperphagia, increased body weight gain, increased basal insulinemia, and, more importantly, a much greater insulin response to meal feeding than that of saline-infused controls. NPY administration also resulted in a pronounced increase in the in vivo insulin-stimulated glucose uptake by adipose tissue but in a marked decrease in uptake by eight different muscle types. Increased insulin responsiveness of the glucose transport process by adipose tissue was accompanied by increases in both GLUT4 mRNA and protein levels. In contrast, the decreased insulin responsiveness of glucose uptake in muscles from NPY-administered rats was not related to GLUT4 expression. We conclude that i.c.v. NPY administration to normal rats produces a hormonal-metabolic situation that is similar to that reported in the dynamic phase of the genetic obesity of the fa/fa strain. Thus, NPY could be of primary importance in the establishment of obesity syndromes with incipient insulin resistance.

Collaboration


Dive into the B. Jeanrenaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge