Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Françoise Rohner-Jeanrenaud is active.

Publication


Featured researches published by Françoise Rohner-Jeanrenaud.


Journal of Clinical Investigation | 2006

Ghrelin action in the brain controls adipocyte metabolism

Claudia Theander-Carrillo; Petra Wiedmer; Philippe Cettour-Rose; Ruben Nogueiras; Diego Perez-Tilve; Paul T. Pfluger; Tamara R. Castañeda; Patrick Muzzin; Annette Schürmann; Ildiko Szanto; Matthias H. Tschöp; Françoise Rohner-Jeanrenaud

Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage-promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase alpha, fatty acid synthase, and stearoyl-CoA desaturase-1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase-1alpha, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue.


Journal of Clinical Investigation | 1997

Direct effects of leptin on brown and white adipose tissue.

Catherine Siegrist-Kaiser; Véronique Pauli; Cristiana E. Juge-Aubry; Olivier Boss; Agnès Pernin; William W. Chin; Isabelle Cusin; Françoise Rohner-Jeanrenaud; Albert G. Burger; Jürgen Zapf; Christoph A. Meier

Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase in the in vivo glucose utilization index of BAT, whereas no significant change was found after intracerebroventricular administration compared with pair-fed control rats, compatible with a direct effect of leptin on BAT. The effect of leptin on WAT fat pads from lean Zucker Fa/ fa rats was assessed ex vivo, where a 9- and 16-fold increase in the rate of lipolysis was observed after 2 h of exposure to 0.1 and 10 nM leptin, respectively. In contrast, no increase in lipolysis was observed in the fat pads from obese fa/fa rats, which harbor an inactivating mutation in the OB-Rb. At the level of gene expression, leptin treatment for 24 h increased malic enzyme and lipoprotein lipase RNA 1.8+/-0.17 and 1.9+/-0.14-fold, respectively, while aP2 mRNA levels were unaltered in primary cultures of brown adipocytes from lean Fa/fa rats. Importantly, however, no significant effect of leptin was observed on these genes in brown adipocytes from obese fa/fa animals. The presence of OB-Rb receptors in adipose tissue was substantiated by the detection of its transcripts by RT-PCR, and leptin treatment in vivo and in vitro activated the specific STATs implicated in the signaling pathway of the OB-Rb. Taken together, our data strongly suggest that leptin has direct effects on BAT and WAT, resulting in the activation of the Jak/STAT pathway and the increased expression of certain target genes, which may partially account for the observed increase in glucose utilization and lipolysis in leptin-treated adipose tissue.


Journal of Clinical Investigation | 2007

The central melanocortin system directly controls peripheral lipid metabolism

Ruben Nogueiras; Petra Wiedmer; Diego Perez-Tilve; Christelle Veyrat-Durebex; Julia M. Keogh; Gregory M. Sutton; Paul T. Pfluger; Tamara R. Castañeda; Susanne Neschen; Susanna M. Hofmann; Philip N. Howles; Donald A. Morgan; Stephen C. Benoit; Ildiko Szanto; Brigitte Schrott; Annette Schürmann; Hans-Georg Joost; Craig Hammond; David Y. Hui; Stephen C. Woods; Kamal Rahmouni; Andrew A. Butler; I. Sadaf Farooqi; Françoise Rohner-Jeanrenaud; Matthias H. Tschöp

Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.


Diabetes | 1995

The ob Gene and Insulin: A Relationship Leading to Clues to the Understanding of Obesity

Isabelle Cusin; Amanda Sainsbury; Patrick Doyle; Françoise Rohner-Jeanrenaud; B. Jeanrenaud

Obesity and non-insulin-dependent diabetes are estimated to affect millions of people in the world. This pathology is multifactorial, comprising complex interactions of genetic and environmental factors and lacking a specific therapy. Great interest arose from the recent discovery of the ob gene expressed only in adipose tissue and coding for a protein that appears to regulate adiposity, potentially by acting as a satiety factor. We report here that in normal rats, ob mRNA is respectively up- or downregulated by a rise in insulinemia (induced by 2-day insulin infusion while maintaining euglycemia) or a decrease in insulinemia (induced by a 3-day fast). Our results also show that in genetically obese fa/fa rats studied longitudinally, white adipose tissue ob mRNA levels increase in parallel with early occurringand steadily increasing hyperinsulinemia. This results in adult obese animals having markedly higher ob mRNA levels than age-matched normoinsulinemic lean rats. Furthermore, in adult obese rats, ob mRNA escapes down-regulation as normalization of hyperinsulinemia due to fasting fails to reduce the high ob mRNA levels.


Diabetes | 1996

The Weight-Reducing Effect of an Intracerebroventricular Bolus Injection of Leptin in Genetically Obese fa/fa Rats: Reduced Sensitivity Compared With Lean Animals

Isabelle Cusin; Françoise Rohner-Jeanrenaud; Alain Stricker-Krongrad; B. Jeanrenaud

The effect of different doses of leptin, given as an intracerebroventricular (ICV) bolus, on body weight gain and food intake was investigated during refeeding, following a 24-h fast in lean (FA/fa) rats. It was observed that ICV leptin resulted in a dose-dependent decrease in body weight gain, compared with vehicle injection, a difference that persisted for at least 6 days. This was associated with a transient reduction in food intake over the first 2 days after leptin injection. More importantly, the effect of leptin was also observed in genetically obese fa/fa rats but at the expense of two to ten times higher leptin concentrations, indicating the presence of decreased leptin sensitivity. Furthermore, ICV leptin injections were able to decrease neuropeptide Y (NPY) levels in the arcuate and paraventricular hypothalamic nuclei in both lean and genetically obese fa/fa rats, although a higher leptin dose was again needed in the obese group. These observations provide further evidence for the implication of NPY and leptin in a regulatory loop controlling body homeostasis. This loop is functional in lean and genetically obese fa/fa rats, provided that leptin levels in the central nervous system are high enough in the obese group, in particular. Since human obesity is frequently associated with elevated circulating leptin levels, a state of decreased leptin sensitivity (i.e., leptin resistance), similar to that described here in fa/fa rats, could possibly occur in human syndromes as well.


Diabetes | 2008

Dietary phytoestrogens activate AMP-activated protein kinase with improvement in lipid and glucose metabolism

Christopher R. Cederroth; Manlio Vinciguerra; Aslan Gjinovci; Françoise Kühne; Marcella Klein; Manon Cederroth; Dorothée Caille; Mariane Suter; Dietbert Neumann; Richard William James; Daniel R. Doerge; Theo Wallimann; Paolo Meda; Michelangelo Foti; Françoise Rohner-Jeanrenaud; Jean-Dominique Vassalli; Serge Nef

OBJECTIVE— Emerging evidence suggests that dietary phytoestrogens can have beneficial effects on obesity and diabetes, although their mode of action is not known. Here, we investigate the mechanisms mediating the action of dietary phytoestrogens on lipid and glucose metabolism in rodents. RESEARCH DESIGN AND METHODS— Male CD-1 mice were fed from conception to adulthood with either a high soy–containing diet or a soy-free diet. Serum levels of circulating isoflavones, ghrelin, leptin, free fatty acids, triglycerides, and cholesterol were quantified. Tissue samples were analyzed by quantitative RT-PCR and Western blotting to investigate changes of gene expression and phosphorylation state of key metabolic proteins. Glucose and insulin tolerance tests and euglycemic-hyperinsulinemic clamp were used to assess changes in insulin sensitivity and glucose uptake. In addition, insulin secretion was determined by in situ pancreas perfusion. RESULTS— In peripheral tissues of soy-fed mice, especially in white adipose tissue, phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase was increased, and expression of genes implicated in peroxisomal fatty acid oxidation and mitochondrial biogenesis was upregulated. Soy-fed mice also showed reduced serum insulin levels and pancreatic insulin content and improved insulin sensitivity due to increased glucose uptake into skeletal muscle. Thus, mice fed with a soy-rich diet have improved adipose and glucose metabolism. CONCLUSIONS— Dietary soy could prove useful to prevent obesity and associated disorders. Activation of the AMPK pathway by dietary soy is likely involved and may mediate the beneficial effects of dietary soy in peripheral tissues.


Diabetes | 2008

Peripheral, but Not Central, CB1 Antagonism Provides Food Intake–Independent Metabolic Benefits in Diet-Induced Obese Rats

Ruben Nogueiras; Christelle Veyrat-Durebex; Paula M. Suchanek; Marcella Klein; Johannes Tschöp; Charles W. Caldwell; Stephen C. Woods; Gábor Wittmann; Masahiko Watanabe; Zsolt Liposits; Csaba Fekete; Ofer Reizes; Françoise Rohner-Jeanrenaud; Matthias H. Tschöp

OBJECTIVE—Blockade of the CB1 receptor is one of the promising strategies for the treatment of obesity. Although antagonists suppress food intake and reduce body weight, the role of central versus peripheral CB1 activation on weight loss and related metabolic parameters remains to be elucidated. We therefore specifically assessed and compared the respective potential relevance of central nervous system (CNS) versus peripheral CB1 receptors in the regulation of energy homeostasis and lipid and glucose metabolism in diet-induced obese (DIO) rats. RESEARCH DESIGN AND METHODS—Both lean and DIO rats were used for our experiments. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR, and euglycemic-hyperinsulinemic clamps were used for insulin sensitivity and glucose metabolism studies. RESULTS—Specific CNS-CB1 blockade decreased body weight and food intake but, independent of those effects, had no beneficial influence on peripheral lipid and glucose metabolism. Peripheral treatment with CB1 antagonist (Rimonabant) also reduced food intake and body weight but, in addition, independently triggered lipid mobilization pathways in white adipose tissue and cellular glucose uptake. Insulin sensitivity and skeletal muscle glucose uptake were enhanced, while hepatic glucose production was decreased during peripheral infusion of the CB1 antagonist. However, these effects depended on the antagonist-elicited reduction of food intake. CONCLUSIONS—Several relevant metabolic processes appear to independently benefit from peripheral blockade of CB1, while CNS-CB1 blockade alone predominantly affects food intake and body weight.


Diabetologia | 1994

Induction and reversibility of an obesity syndrome by intracerebroventricular neuropeptide Y administration to normal rats

R. Vettor; Nicolas Zarjevski; Isabelle Cusin; Françoise Rohner-Jeanrenaud; B. Jeanrenaud

SummaryIntracerebroventricular neuropeptide Y (NPY) administration to normal rats for 7 days produced a sustained, threefold increase in food intake, resulting in a body weight gain of more than 40 g. Basal plasma insulin and triglyceride levels were increased in NPY-treated compared to vehicle-infused rats by about four- and two-fold, respectively. The glucose utilization index of white adipose tissue, measured by the labelled 2-deoxy-d-glucose technique was four times higher in NPY-treated rats compared to controls. This change was accompanied by an increase in the insulin responsive glucose transporter protein (GLUT 4). In marked contrast, muscle glucose utilization was decreased in NPY-treated compared to vehicle-infused animals. This change was accompanied by an increase in triglyceride content. When NPY-treated rats were prevented from overeating, there was no decrease in muscle glucose uptake, nor was there an increase in muscle triglyceride content. This suggests that muscle insulin resistance of ad libitum-fed NPY-treated rats is due to a glucose-fatty acid (Randle) cycle. When intracerebro-ventricular NPY administration was stopped and rats kept without any treatment for 7 additional days, all the abnormalities brought about by the neuropeptide were normalized. A tonic central effect of NPY is therefore needed to elicit and maintain most of the hormonal and metabolic abnormalities observed in the present study. Such abnormalities are analogous to those seen in the dynamic phase of obesity syndromes in which high hypothalamic NPY levels have been reported.


The Journal of Neuroscience | 2009

Direct Control of Peripheral Lipid Deposition by CNS GLP-1 Receptor Signaling Is Mediated by the Sympathetic Nervous System and Blunted in Diet-Induced Obesity

Ruben Nogueiras; Diego Perez-Tilve; Christelle Veyrat-Durebex; Donald A. Morgan; Luis M. Varela; William G. Haynes; James T. Patterson; Emmanuel Disse; Paul T. Pfluger; Miguel López; Stephen C. Woods; Richard D. DiMarchi; Carlos Dieguez; Kamal Rahmouni; Françoise Rohner-Jeanrenaud; Matthias H. Tschöp

We investigated a possible role of the central glucagon-like peptide (GLP-1) receptor system as an essential brain circuit regulating adiposity through effects on nutrient partitioning and lipid metabolism independent from feeding behavior. Both lean and diet-induced obesity mice were used for our experiments. GLP-1 (7–36) amide was infused in the brain for 2 or 7 d. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR or Western blot. To test the hypothesis that the sympathetic nervous system may be responsible for informing adipocytes about changes in CNS GLP-1 tone, we have performed direct recording of sympathetic nerve activity combined with experiments in genetically manipulated mice lacking β-adrenergic receptors. Intracerebroventricular infusion of GLP-1 in mice directly and potently decreases lipid storage in white adipose tissue. These effects are independent from nutrient intake. Such CNS control of adipocyte metabolism was found to depend partially on a functional sympathetic nervous system. Furthermore, the effects of CNS GLP-1 on adipocyte metabolism were blunted in diet-induced obese mice. The CNS GLP-1 system decreases fat storage via direct modulation of adipocyte metabolism. This CNS GLP-1 control of adipocyte lipid metabolism appears to be mediated at least in part by the sympathetic nervous system and is independent of parallel changes in food intake and body weight. Importantly, the CNS GLP-1 system loses the capacity to modulate adipocyte metabolism in obese states, suggesting an obesity-induced adipocyte resistance to CNS GLP-1.


Diabetes | 2012

Direct Control of Brown Adipose Tissue Thermogenesis by Central Nervous System Glucagon-Like Peptide-1 Receptor Signaling

Sarah Kathleen Haas Lockie; Kristy M. Heppner; Nilika Chaudhary; Joseph Chabenne; Donald A. Morgan; Christelle Veyrat-Durebex; Gayathri Ananthakrishnan; Françoise Rohner-Jeanrenaud; Daniel J. Drucker; Richard D. DiMarchi; Kamal Rahmouni; Brian J. Oldfield; Matthias H. Tschöp; Diego Perez-Tilve

We studied interscapular brown adipose tissue (iBAT) activity in wild-type (WT) and glucagon-like peptide 1 receptor (GLP-1R)–deficient mice after the administration of the proglucagon-derived peptides (PGDPs) glucagon-like peptide (GLP-1), glucagon (GCG), and oxyntomodulin (OXM) directly into the brain. Intracerebroventricular injection of PGDPs reduces body weight and increases iBAT thermogenesis. This was independent of changes in feeding and insulin responsiveness but correlated with increased activity of sympathetic fibers innervating brown adipose tissue (BAT). Despite being a GCG receptor agonist, OXM requires GLP-1R activation to induce iBAT thermogenesis. The increase in thermogenesis in WT mice correlates with increased expression of genes upregulated by adrenergic signaling and required for iBAT thermogenesis, including PGC1a and UCP-1. In spite of the increase in iBAT thermogenesis induced by GLP-1R activation in WT mice, Glp1r−/− mice exhibit a normal response to cold exposure, demonstrating that endogenous GLP-1R signaling is not essential for appropriate thermogenic response after cold exposure. Our data suggest that the increase in BAT thermogenesis may be an additional mechanism whereby pharmacological GLP-1R activation controls energy balance.

Collaboration


Dive into the Françoise Rohner-Jeanrenaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruben Nogueiras

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge