Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Khanal is active.

Publication


Featured researches published by B. Khanal.


Journal of Turbomachinery-transactions of The Asme | 2013

Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage

B. Khanal; L. He; J. Northall; P. Adami

The high pressure (HP) turbine is subject to inlet flow nonuniformities resulting from the combustor. A lean-burn combustor tends to combine temperature variations with strong swirl and, although considerable research efforts have been made to study the effects of a circumferential temperature nonuniformity (hot-streak), there is relatively little known about the interaction between the two. This paper presents a numerical investigation of the transonic test HP stage MT1 behavior under the combined influence of the swirl and hot-streak. The in house Rolls-Royce HYDRA numerical computational fluid dynamics (CFD) suite is used for all the simulations of the present study. Baseline configurations with either hot-streak or swirl at the stage inlet are analyzed to assess the methodology and to identify reference performance parameters through comparisons with the experimental data. Extensive computational analyses are then carried out for the cases with hot-streak and swirl combined, including both the effects of the combustor-nozzle guide vane (NGV) clocking and the direction of the swirl. The present results for the combined hot-streak and swirl cases reveal distinctive radial migrations of hot fluid in the NGV and rotor passages with considerable impact on the aerothermal performance. It is illustrated that the blade heat transfer characteristics and their dependence on the clocking position can be strongly affected by the swirl direction. A further computational examination is carried out on the validity of a superposition of the influences of swirl and hot-streak. It shows that the blade heat transfer in a combined swirl and hot-streak case cannot be predicted by the superposition of each in isolation.


Journal of Turbomachinery-transactions of The Asme | 2013

Effect of Nozzle Guide Vane Lean Under Influence of Inlet Temperature Traverse

A. Rahim; B. Khanal; L. He; Eduardo Romero

One of the most widely studied parameters in turbine blade shaping is blade lean, i.e., the tangential displacement of spanwise sections. However, there is a lack of published research that investigates the effect of blade lean under nonuniform temperature conditions (commonly referred to as a “hot-streak”) that are present at the combustor exit. Of particular interest is the impact of such an inflow temperature profile on heat transfer when the nozzle guide vane (NGV) blades are shaped. In the present work, a computational study has been carried out for a transonic turbine stage using an efficient unsteady Navier–Stokes solver (HYDRA). The configurations with a nominal vane and a compound leaned vane under uniform and hot-streak inlet conditions are analyzed. After confirming the typical NGV loading and aeroloss redistributions as seen in previous literature on blade lean, the focus has been directed to the rotor aerothermal behavior. While the overall stage efficiencies for the configurations are largely comparable, the results show strikingly different rotor heat transfer characteristics. For a uniform inlet, a leaned NGV has a detrimental effect on the rotor heat transfer. However, once the hot-streak is introduced, the trend is reversed; the leaned NGV leads to favorable heat transfer characteristics in general and for the rotor tip region in particular. The possible causal links for the observed aerothermal features are discussed. The present findings also highlight the significance of evaluating NGV shaping designs under properly conditioned inflow profiles, rather than extrapolating the wisdom derived from uniform inlet cases. The results also underline the importance of including rotor heat transfer and coolability during the NGV design process.


ASME Turbo Expo 2013: Turbine Technical Conference and Exposition | 2013

Effect of NGV Lean Under Influence of Inlet Temperature Traverse

A. Rahim; B. Khanal; L. He; Eduardo Romero

One of the most widely studied parameters in turbine blade shaping is blade lean, i.e. the tangential displacement of spanwise sections. However, there is a lack of published research that investigates the effect of blade lean under non-uniform temperature conditions (commonly referred to as a ‘hot-streak’) that are present at the combustor exit. Of particular interest is the impact of such an inflow temperature profile on heat transfer when the NGV blades are shaped.In the present work a computational study has been carried out for a transonic turbine stage using an efficient unsteady Navier-Stokes solver (HYDRA). The configurations with a nominal vane and a compound leaned vane under uniform and hot-streak inlet conditions are analysed. After confirming the typical NGV loading and aero-loss redistributions as seen in previous literature on blade lean, the focus has been directed to the rotor aerothermal behavior. Whilst the overall stage efficiencies for the configurations are largely comparable, the results show strikingly different rotor heat transfer characteristics. For a uniform inlet, a leaned NGV has a detrimental effect on the rotor heat transfer. However, once the hot-streak is introduced, the trend is reversed; the leaned NGV leads to favourable heat transfer characteristics in general and for the rotor tip region in particular. The possible causal links for the observed aerothermal features are discussed.The present findings also highlight the significance of evaluating NGV shaping designs under properly conditioned inflow profiles, rather than extrapolating the wisdom derived from uniform inlet cases. The results also underline the importance of including rotor heat transfer and coolability during the NGV design process.Copyright


Aeronautical Journal | 2012

Computational investigation of cavity flow control using a passive device

B. Khanal; Kevin Knowles; A. J. Saddington

In this paper, flow control effectiveness of a passive device in relation to open cavity flowfield is investigated computationally and compared with experimental work. Specifically the modification in the cavity flowfield due to the presence of a spoiler is studied in details to explain the physics behind the flow control effects. A combination of 2D and 3D flow visualisation tools are used to understand the flow behaviour inside the cavity and the quantitative analysis of the unsteady pressure fluctuations is also performed to assess the unsteady effects. Flow simulations with a turbulence model based on a hybrid RANS/LES (commonly known as Detached-Eddy Simulation (DES)) are used in this study. The time-mean flow visualisation clearly showed the presence of three dimensional effects inside the empty cavity whereas the 3D effects were found to diminish in the presence of a spoiler. In the unsteady flow analysis, near-field acoustic spectra were computed for empty cavity as well as cavity-with-spoiler cases. Study of unsteady pressure spectra for the cavity-with-spoiler case was found to record the complete suppression of the dominant tones in the presence of the spoiler. The analysis has indicated that the main reason behind this suppression is due to the inability of faintly energised vortical structures (faintly energised as a result of the extraction of turbulent kinetic energy by the spoiler) to maintain the unsteady flapping of the separated shear layer. THE AERONAUTICAL JOURNAL FEBRUARY 2012 VOLUME 116 NO 1176 153 Computational investigation of cavity flow control using a passive device B. Khanal [email protected] Department of Engineering Science University of Oxford Oxford, UK K. Knowles A. J. Saddington ([email protected] [email protected] Aeromechanical Systems Group Cranfield University Shrivenham, UK Paper No. 3667. Manuscript received 18 November 2010, revised version received 6 June 2011, accepted 28 June 2011. 3667:New Resized Aero Journal 2012 31/01/2012 14:42 Page 153


ASME Turbo Expo 2012: Turbine Technical Conference and Exposition | 2012

Analysis of Radial Migration of Hot-Streak in Swirling Flow Through HP Turbine Stage

B. Khanal; L. He; J. Northall; P. Adami

The high pressure (HP) turbine is subject to inlet flow non-uniformities resulting from the combustor. A lean-burn combustor tends to combine temperature variations with strong swirl and, although considerable research efforts have been made to study the effects of a circumferential temperature non-uniformity (hot-streak), there is relatively little known about the interaction between the two.This paper presents a numerical investigation of the transonic test HP stage MT1 behaviour under the combined influence of the swirl and hot-streak. The in house Rolls-Royce HYDRA numerical CFD suite is used for all the simulations of the present study. Baseline configurations with either hot-streak or swirl at the stage inlet are analyzed to assess the methodology and to identify reference performance parameters through comparisons with the experimental data. Extensive computational analyses are then carried out for the cases with hot-streak and swirl combined including both the effects of the combustor-NGV clocking and the direction of the swirl. The present results for the combined hot-streak and swirl cases reveal distinctive radial migrations of hot fluid in the NGV and rotor passages with considerable impact on the aerothermal performance. It is illustrated that the blade heat transfer characteristics and their dependence on the clocking position can be strongly affected by the swirl direction. A further computational examination is carried out on the validity of a superposition of the influences of swirl and hot-streak. It shows that the blade heat transfer in a combined swirl and hot-streak case cannot be predicted by the superposition of each in isolation.Copyright


Aeronautical Journal | 2011

Computational study of flowfield characteristics in cavities with stores

B. Khanal; Kevin Knowles; A. J. Saddington

In this paper, the results of computational studies on the unsteady flow features in three-dimensional empty cavities and cavities with a representative store are presented. Flow simulations with a turbulence model based on a hybrid method, which behaves as a standard Reynolds-averaged Navier-Stokes (RANS) model within the attached boundary layer and as a Large-Eddy Simulation LES sub-grid scale model in the rest of the flow (commonly known as Detached-Eddy Simulation (DES)) are used in this study. The time-mean flow study showed the presence of three-dimensional effects inside the cavities. The mean flowfield visualisation also clearly showed the presence of a pair of ‘tornado-like’ vortices in the upstream half of the cavity which merge to a single, large recirculation further downstream. Visualisation for the cavity-withstore case revealed that the mean flowfield was effectively divided into two halves with significant reduction of the spanwise flow across the cavity width. In the unsteady flow study, near-field acoustic spectra were computed for the empty cavity and cavitywith-store cases. Study of unsteady pressure spectra for the cavitywith-store case found the presence of many peaks and the corresponding mode frequencies were found to agree well with the Rossiter modes. The blockage effect of store and strut on the spanwise flow is thought to have reduced the interaction, and subsequent non-linear coupling, between the Rossiter modes. This may be the reason for the co-existence of multiple modes without the coupling among them. THE AERONAUTICAL JOURNAL NOVEMBER 2011 VOLUME 115 NO 1172 669


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2018

Computational Fluid Dynamics Investigation of a Core-Mounted Target-Type Thrust Reverser—Part 2: Reverser Deployed Configuration

Tashfeen Mahmood; Anthony Jackson; Vishal Sethi; B. Khanal; Fakhre Ali

Core-mounted target-type thrust reverser (CMTTTR) design was proposed by NASA in the second half of the 90 s. NASA carried out several experiments at static conditions, and their acquired results suggested that the performance characteristics of the CMTTTR design fall short to comply with the mandatory thrust reverser (TR) performance criteria, and were therefore regarded as an infeasible design. However, the authors of this paper believe that the results presented by NASA for the CMTTTR design require further exploration to facilitate the complete understanding of its true performance potential. This part 2 paper is a continuation from Part 1 (reverser stowed configuration) and presents a comprehensive three-dimensional (3D) computational fluid dynamics (CFD) analyses of the CMTTTR in deployed configuration. The acquired results are extensively analyzed for aforementioned TR configuration operating under the static operating conditions at sea level, i.e., sea-level static, International Standard Atmosphere (ISA); the analyses at forward flight conditions will be covered in part 3. The key objectives of this paper are: First, to validate the acquired CFD results with the experimental data provided by NASA; this is achieved by measuring the static pressure values on various surfaces of the deployed CMTTTR model. The second objective is to estimate the performance characteristics of the CMTTTR design and corroborate the results with experimental data. The third objective is to estimate the pressure thrust (i.e., axial thrust generated due to the pressure difference across various reverser surfaces) and discuss its significance for formulating the performance of any TR design. The fourth objective is to investigate the influence of kicker plate installation on overall TR performance. The fifth and final objective is to examine and discuss the overall flow physics associated with the thrust reverse under deployed configuration.


International Journal of Computational Fluid Dynamics | 2011

Mathematically consistent boundary conditions and turbulence matching at block interfaces for computational aeroacoustics

B. Khanal; Kevin Knowles; A. J. Saddington

The method of characteristics is used to implement the various boundary conditions (e.g. wall and interface) in a high-order computational aeroacoustic (CAA) code developed by the first author. Most characteristic methods do not satisfy Pfaffs condition (which needs to be satisfied for any mathematical relation to be valid). A mathematically consistent and valid method is used in this work to derive the characteristic boundary conditions. Also, a robust and efficient approach for the matching of turbulence quantities at multi-block interfaces is proposed. Various numerical simulation cases were run to validate the concepts. The computed results show that the proposed method is accurate, robust and is in excellent agreement with experimental data. The results also indicate that the matching of turbulence quantities is essential for accurate turbulent flow calculations.


47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition | 2009

Computational study of cavity flowfield at transonic speeds

B. Khanal; Kevin Knowles; A. J. Saddington

In this paper, the results of a computational study on the unsteady flow features in three-dimensional empty cavities and a cavity with a store are presented. Flow simulations with a turbulence model based on a hybrid method, which behaves as a standard RANS model within the attached boundary layer and as a LES Sub-Grid Scale model in the rest of the flow, including the separated regions, are used in this study. The time-mean flow study showed the existence of spanwise flow in the 3D cavity. In the unsteady flow study, computed near-field acoustic spectra were for empty cavity as well as cavity-withstore cases. Unsteady results from an empty cavity case are compared with experimental data and the frequency of the dominant mode is in good agreement with the experiment. Study of unsteady pressure spectra for the cavity-with-store case found the presence of many peaks and the corresponding mode frequencies were found to agree well with the Rossiter modes. The mean flowfield visualisation for the cavity-with-store case clearly showed that the mean flowfield was effectively divided into two halves with signifiant reduction of the spanwise flow across the cavity width. This blockage effect of store and strut on the spanwise flow is thought to have reduced the interaction, and subsequent non-linear coupling between, the Rossiter modes. This may be the reason for the coexistence of multiple modes without the coupling among them.


Aerospace | 2017

An efficiently parallelized high-order aeroacoustics solver using a characteristic-based multi-block interface treatment and optimized compact finite differencing

B. Khanal; A. J. Saddington; Kevin Knowles

Collaboration


Dive into the B. Khanal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. He

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

A. Rahim

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Rosic

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

Q. Zhang

City University London

View shared research outputs
Top Co-Authors

Avatar

Tashfeen Mahmood

United Kingdom Ministry of Defence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fakhre Ali

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge