Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Leticia Rodriguez is active.

Publication


Featured researches published by B. Leticia Rodriguez.


International Journal of Nanomedicine | 2012

Molecular targeting of liposomal nanoparticles to tumor microenvironment.

Gang Zhao; B. Leticia Rodriguez

Liposomes are biodegradable and can be used to deliver drugs at a much higher concentration in tumor tissues than in normal tissues. Both passive and active drug delivery by liposomal nanoparticles can significantly reduce the toxic side effects of anticancer drugs and enhance the therapeutic efficacy of the drugs delivered. Active liposomal targeting to tumors is achieved by recognizing specific tumor receptors through tumor-specific ligands or antibodies coupled onto the surface of the liposomes, or by stimulus-sensitive drug carriers such as acid-triggered release or enzyme-triggered drug release. Tumors are often composed of tumor cells and nontumor cells, which include endothelial cells, pericytes, fibroblasts, stromal, mesenchymal cells, innate, and adaptive immune cells. These nontumor cells thus form the tumor microenvironment, which could be targeted and modified so that it is unfavorable for tumor cells to grow. In this review, we briefly summarized articles that had taken advantage of liposomal nanoparticles as a carrier to deliver anticancer drugs to the tumor microenvironment, and how they overcame obstacles such as nonspecific uptake, interaction with components in blood, and toxicity. Special attention is devoted to the liposomal targeting of anticancer drugs to the endothelium of tumor neovasculature, tumor associated macrophages, fibroblasts, and pericytes within the tumor microenvironment.


International Journal of Nanomedicine | 2011

Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin.

Amit Kumar; Xinran Li; Michael Sandoval; B. Leticia Rodriguez; Brian R. Sloat; Zhengrong Cui

Background: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection. Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection. Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection.


Journal of Controlled Release | 2012

EGFR-targeted stearoyl gemcitabine nanoparticles show enhanced anti-tumor activity

Michael A. Sandoval; Brian R. Sloat; Dharmika S.P. Lansakara-P; Amit Kumar; B. Leticia Rodriguez; Kaoru Kiguchi; John DiGiovanni; Zhengrong Cui

Previously, it was shown that a novel 4-(N)-stearoyl gemcitabine nanoparticle formulation was more effective than gemcitabine hydrochloride in controlling the growth of model mouse or human tumors pre-established in mice. In the present study, the feasibility of targeting the stearoyl gemcitabine nanoparticles (GemC18-NPs) into tumor cells that over-express epidermal growth factor receptor (EGFR) to more effectively control tumor growth was evaluated. EGFR is over-expressed in a variety of tumor cells, and EGF is a known natural ligand of EGFR. Recombinant murine EGF was conjugated onto the GemC18-NPs. The ability of the EGF to target the GemC18-NPs to human breast adenocarcinoma cells that expressed different levels of EGFR was evaluated in vitro and in vivo. In culture, the extent to which the EGF-conjugated GemC18-NPs were taken up by tumor cells was correlated to the EGFR density on the tumor cells, whereas the uptake of untargeted GemC18-NPs exhibited no difference among those same cell lines. The relative cytotoxicity of the EGF-conjugated GemC18-NPs to tumor cells in culture was correlated to EGFR expression as well. In vivo, EGFR-over-expressing MDA-MB-468 tumors in mice treated with the EGF-conjugated GemC18-NPs grew significantly slower than in mice treated with untargeted GemC18-NPs, likely due to that the EGF-GemC18-NPs were more anti-proliferative, anti-angiogenic, and pro-apoptotic. Fluorescence intensity data from ex vivo imaging showed that the EGF on the nanoparticles helped increase the accumulation of the GemC18-NPs into MDA-MB-468 tumors pre-established in mice by more than 2-fold as compared to the un-targeted GemC18-NPs. In conclusion, active targeting of the GemC18-NPs into EGFR-over-expressed tumors can further enhance their anti-tumor activity.


Molecular Pharmaceutics | 2014

Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: in vitro and in vivo evaluation.

Youssef W. Naguib; B. Leticia Rodriguez; Xinran Li; Stephen D. Hursting; Robert O. Williams; Zhengrong Cui

Docetaxel (DCX) is a second generation taxane. It is approved by the U.S. Food and Drug Administration for the treatment of various types of cancer, including breast, non-small cell lung, and head and neck cancers. However, side effects, including those related to Tween 80, an excipient in current DCX formulations, can be severe. In the present study, we developed a novel solid lipid nanoparticle (SLN) composition of DCX. Trimyristin was selected from a list of high melting point triglycerides as the core lipid component of the SLNs, based on the rate at which the DCX was released from the SLNs and the stability of the SLNs. The trimyristin-based, PEGylated DCX-incorporated SLNs (DCX-SLNs) showed significantly higher cytotoxicity against various human and murine cancer cells in culture, as compared to DCX solubilized in a Tween 80/ethanol solution. Moreover, in a mouse model with pre-established tumors, the new DCX-SLNs were significantly more effective than DCX solubilized in a Tween 80/ethanol solution in inhibiting tumor growth without toxicity, likely because the DCX-SLNs increased the concentration of DCX in tumor tissues, but decreased the levels of DCX in major organs such as liver, spleen, heart, lung, and kidney. DCX-incorporated SLNs prepared with one or more high-melting point triglycerides may represent an improved DCX formulation.


International Journal of Pharmaceutics | 2012

Synthesis and in vitro evaluation of novel lipophilic monophosphorylated gemcitabine derivatives and their nanoparticles

Dharmika S.P. Lansakara-P; B. Leticia Rodriguez; Zhengrong Cui

Gemcitabine hydrochloride (HCl) is approved for the treatment of a wide spectrum of solid tumors. However, the rapid development of resistance often makes gemcitabine less efficacious. In the present study, we synthesized several novel lipophilic monophosphorylated gemcitabine derivatives, incorporated them into solid lipid nanoparticles, and then evaluated their ability to overcome major known gemcitabine resistance mechanisms by evaluating their in vitro cytotoxicities in cancer cells that are deficient in deoxycytidine kinase (dCK), deficient in human equilibrative nucleoside transporter (hENT1), over-expressing ribonucleotide reductase M1 subunit (RRM1), or over-expressing RRM2. In dCK deficient cells, the monophosphorylated gemcitabine derivatives and their nanoparticles were up to 86-fold more cytotoxic than gemcitabine HCl. The majority of the gemcitabine derivatives and their nanoparticles were more cytotoxic than gemcitabine HCl in cells that over-expressing RRM1 or RRM2, and the gemcitabine derivatives in nanoparticles were also resistant to deamination by deoxycytidine deaminase. The gemcitabine derivatives (in nanoparticles) hold a great potential in overcoming gemcitabine resistance.


Journal of Pharmacy and Pharmacology | 2011

The extent of the uptake of plasmid into the skin determines the immune responses induced by a DNA vaccine applied topically onto the skin

Zhen Yu; Woon Gye Chung; Brian R. Sloat; Christiane V. Löhr; Richard Weiss; B. Leticia Rodriguez; Xinran Li; Zhengrong Cui

Objectives  Non‐invasive immunization by application of plasmid DNA topically onto the skin is an attractive immunization approach. However, the immune responses induced are generally weak. Previously, we showed that the antibody responses induced by topical DNA vaccine are significantly enhanced when hair follicles in the application area are induced into the anagen (growth) stage by hair plucking. In the present study, we further investigated the mechanism of immune enhancement.


Molecular Pharmaceutics | 2013

Antitumor Activity of Tumor-Targeted RNA Replicase-Based Plasmid That Expresses Interleukin-2 in a Murine Melanoma Model

B. Leticia Rodriguez; Jorge Blando; Dharmika S.P. Lansakara-P; Yuriko Kiguchi; John DiGiovanni; Zhengrong Cui

Double-stranded RNA (dsRNA) has multiple antitumor mechanisms that may be used to control tumor growth. Previously we have shown that treatment of solid tumors with a plasmid that encodes Sindbis viral RNA replicase complex, pSIN-β, significantly inhibited the growth of tumors in mice. In the present study, we evaluated the feasibility of further improving the antitumor activity of the pSIN-β plasmid by incorporating interleukin-2 (IL2) gene into the plasmid. The resultant pSIN-IL2 plasmid was delivered to mouse melanoma cells that overexpress the sigma receptor. Here we report that the pSIN-IL2 plasmid was more effective at controlling the growth of B16 melanoma in mice when complexed with sigma receptor-targeted liposomes than with the untargeted liposomes. Importantly, the pSIN-IL2 plasmid was more effective than pSIN-β plasmid at controlling the growth of B16 melanoma in mice, and B16 tumor-bearing mice that were treated with pSIN-IL2 had an elevated number of activated CD4(+), CD8(+), and natural killer cells, as compared to those treated with pSIN-β. The RNA replicase-based, IL2-expressing plasmid may have applications in melanoma gene therapy.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Control of solid tumor growth in mice using EGF receptor-targeted RNA replicase-based plasmid DNA

B. Leticia Rodriguez; Xinran Li; Kaoru Kiguchi; John DiGiovanni; Evan C. Unger; Zhengrong Cui

AIM Previously, it was shown that treatment of tumor-bearing mice with an RNA replicase-based plasmid that produces dsRNA when transfected into tumor cells significantly inhibited the tumor growth. In the present study, the feasibility of further improving the anti-tumor activity of the RNA replicase-based plasmid by targeting it into tumors cells was evaluated. MATERIAL & METHODS An EGF-conjugated, polyethylene glycosylated cationic liposome was developed to deliver the RNA replicase-based plasmid, pSIN-β, into EGF receptor-overexpressing human breast cancer cells (MDA-MB-468) in vitro and in vivo. RESULTS Delivery of pSIN-β using the EGF receptor-targeted liposome more effectively controlled the growth of MDA-MB-468 tumors (and human epidermoid carcinoma A431 tumors) in mice than using untargeted liposome. The pSIN-β carried by the EGF receptor-targeted liposome caused the complete regression of MDA-MB-468 tumors in mice, probably due to the enhancement of its proapoptotic, antiproliferative and antiangiogenic activities. DISCUSSION Tumor-targeted RNA replicase-based plasmids hold a strong potential in tumor therapy.


Neoplasia | 2016

Synthesis, Characterization, and In Vitro and In Vivo Evaluations of 4-(N)-Docosahexaenoyl 2′, 2′-Difluorodeoxycytidine with Potent and Broad-Spectrum Antitumor Activity

Youssef W. Naguib; Dharmika S.P. Lansakara-P; Laura M. Lashinger; B. Leticia Rodriguez; Solange Valdes; Mengmeng Niu; Abdulaziz M. Aldayel; Lan Peng; Stephen D. Hursting; Zhengrong Cui

In this study, a new compound, 4-(N)-docosahexaenoyl 2′, 2′-difluorodeoxycytidine (DHA-dFdC), was synthesized and characterized. Its antitumor activity was evaluated in cell culture and in mouse models of pancreatic cancer. DHA-dFdC is a poorly soluble, pale yellow waxy solid, with a molecular mass of 573.3 Da and a melting point of about 96°C. The activation energy for the degradation of DHA-dFdC in an aqueous Tween 80–based solution is 12.86 kcal/mol, whereas its stability is significantly higher in the presence of vitamin E. NCI-60 DTP Human Tumor Cell Line Screening revealed that DHA-dFdC has potent and broad-spectrum antitumor activity, especially in leukemia, renal, and central nervous system cancer cell lines. In human and murine pancreatic cancer cell lines, the IC50 value of DHA-dFdC was up to 105-fold lower than that of dFdC. The elimination of DHA-dFdC in mouse plasma appeared to follow a biexponential model, with a terminal phase t1/2 of about 58 minutes. DHA-dFdC significantly extended the survival of genetically engineered mice that spontaneously develop pancreatic ductal adenocarcinoma. In nude mice with subcutaneously implanted human Panc-1 pancreatic tumors, the antitumor activity of DHA-dFdC was significantly stronger than the molar equivalent of dFdC alone, DHA alone, or the physical mixture of them (1:1, molar ratio). DHA-dFdC also significantly inhibited the growth of Panc-1 tumors orthotopically implanted in the pancreas of nude mice, whereas the molar equivalent dose of dFdC alone did not show any significant activity. DHA-dFdC is a promising compound for the potential treatment of cancers in organs such as the pancreas.


BMC Cancer | 2011

Replicase-based plasmid DNA shows anti-tumor activity

B. Leticia Rodriguez; Zhen Yu; Woon Gye Chung; Richard Weiss; Zhengrong Cui

BackgroundDouble stranded RNA (dsRNA) has multiple anti-tumor mechanisms. Over the past several decades, there have been numerous attempts to utilize synthetic dsRNA to control tumor growth in animal models and clinical trials. Recently, it became clear that intracellular dsRNA is more effective than extracellular dsRNA on promoting apoptosis and orchestrating adaptive immune responses. To overcome the difficulty in delivering a large dose of synthetic dsRNA into tumors, we propose to deliver a RNA replicase-based plasmid DNA, hypothesizing that the dsRNA generated by the replicase-based plasmid in tumor cells will inhibit tumor growth.MethodsThe anti-tumor activity of a plasmid (pSIN-β) that encodes the sindbis RNA replicase genes (nsp1-4) was evaluated in mice with model tumors (TC-1 lung cancer cells or B16 melanoma cells) and compared to a traditional pCMV-β plasmid.ResultsIn cell culture, transfection of tumor cells with pSIN-β generated dsRNA. In mice with model tumors, pSIN-β more effectively delayed tumor growth than pCMV-β, and in some cases, eradicated the tumors.ConclusionRNA replicase-based plasmid may be exploited to generate intracellular dsRNA to control tumor growth.

Collaboration


Dive into the B. Leticia Rodriguez's collaboration.

Top Co-Authors

Avatar

Zhengrong Cui

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinran Li

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John DiGiovanni

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Stephen D. Hursting

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Youssef W. Naguib

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Abdulaziz M. Aldayel

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Amit Kumar

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Kaoru Kiguchi

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge