Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dharmika S.P. Lansakara-P is active.

Publication


Featured researches published by Dharmika S.P. Lansakara-P.


International Journal of Pharmaceutics | 2011

In vitro and in vivo anti-tumor activities of a gemcitabine derivative carried by nanoparticles

Brian R. Sloat; Michael A. Sandoval; Dong Li; Woon Gye Chung; Dharmika S.P. Lansakara-P; Philip J. Proteau; Kaoru Kiguchi; John DiGiovanni; Zhengrong Cui

Gemcitabine (Gemzar(®)) is the first line treatment for pancreatic cancer and often used in combination therapy for non-small cell lung, ovarian, and metastatic breast cancers. Although extremely toxic to a variety of tumor cells in culture, the clinical outcome of gemcitabine treatment still needs improvement. In the present study, a new gemcitabine nanoparticle formulation was developed by incorporating a previously reported stearic acid amide derivative of gemcitabine into nanoparticles prepared from lecithin/glyceryl monostearate-in-water emulsions. The stearoyl gemcitabine nanoparticles were cytotoxic to tumor cells in culture, although it took a longer time for the gemcitabine in the nanoparticles to kill tumor cells than for free gemcitabine. In mice with pre-established model mouse or human tumors, the stearoyl gemcitabine nanoparticles were significantly more effective than free gemcitabine in controlling the tumor growth. PEGylation of the gemcitabine nanoparticles with polyethylene glycol (2000) prolonged the circulation of the nanoparticles in blood and increased the accumulation of the nanoparticles in tumor tissues (>6-fold), but the PEGylated and un-PEGylated gemcitabine nanoparticles showed similar anti-tumor activity in mice. Nevertheless, the nanoparticle formulation was critical for the stearoyl gemcitabine to show a strong anti-tumor activity. It is concluded that for the gemcitabine derivate-containing nanoparticles, cytotoxicity data in culture may not be used to predict their in vivo anti-tumor activity, and this novel gemcitabine nanoparticle formulation has the potential to improve the clinical outcome of gemcitabine treatment.


Journal of Controlled Release | 2012

Stearoyl gemcitabine nanoparticles overcome resistance related to the over-expression of ribonucleotide reductase subunit M1

Woon Gye Chung; Michael A. Sandoval; Brian R. Sloat; Dharmika S.P. Lansakara-P; Zhengrong Cui

Gemcitabine is a deoxycytidine analog used in the treatment of various solid tumors. However, tumors often develop resistances over time, which becomes a major issue for most gemcitabine-related chemotherapies. In the present study, a previously reported stearoyl gemcitabine nanoparticle formulation (GemC18-NPs) was evaluated for its ability to overcome gemcitabine resistance. In the wild type CCRF-CEM human leukemia cells, the IC(50) value of GemC18-NPs was 9.5-fold greater than that of gemcitabine hydrochloride (HCl). However, in the CCRF-CEM-AraC-8C cells that are deficient in the human equilibrative nucleoside transporter-1, the IC(50) of GemC18-NPs was only 3.4-fold greater than that in the parent CCRF-CEM cells, whereas the IC(50) of gemcitabine HCl was 471-fold greater than that in the parent CCRF-CEM cells. The GemC18-NPs were also more cytotoxic than gemcitabine HCl in the deoxycytidine kinase deficient (CCRF-CEM/dCK(-/-)) tumor cells. Similar to gemcitabine HCl, GemC18-NPs induced apoptosis through caspase activation. Another gemcitabine-resistant tumor cell line, TC-1-GR, was developed in our laboratory. In the TC-1-GR cells, the IC(50) of GemC18-NPs was only 5% of that of gemcitabine HCl. Importantly, GemC18-NPs effectively controlled the growth of gemcitabine resistant TC-1-GR tumors in mice, whereas the molar equivalent dose of gemcitabine HCl did not show any activity against the growth of the TC-1-GR tumors. Proteomics analysis revealed that the TC-1-GR cells over-expressed ribonucleotide reductase M1, which was likely the cause of the acquired gemcitabine resistance in the TC-1-GR cells. To our best knowledge, this represents the first report demonstrating that a nanoparticle formulation of gemcitabine overcomes gemcitabine resistance related to ribonucleotide reductase M1 over-expression.


Journal of Controlled Release | 2012

EGFR-targeted stearoyl gemcitabine nanoparticles show enhanced anti-tumor activity

Michael A. Sandoval; Brian R. Sloat; Dharmika S.P. Lansakara-P; Amit Kumar; B. Leticia Rodriguez; Kaoru Kiguchi; John DiGiovanni; Zhengrong Cui

Previously, it was shown that a novel 4-(N)-stearoyl gemcitabine nanoparticle formulation was more effective than gemcitabine hydrochloride in controlling the growth of model mouse or human tumors pre-established in mice. In the present study, the feasibility of targeting the stearoyl gemcitabine nanoparticles (GemC18-NPs) into tumor cells that over-express epidermal growth factor receptor (EGFR) to more effectively control tumor growth was evaluated. EGFR is over-expressed in a variety of tumor cells, and EGF is a known natural ligand of EGFR. Recombinant murine EGF was conjugated onto the GemC18-NPs. The ability of the EGF to target the GemC18-NPs to human breast adenocarcinoma cells that expressed different levels of EGFR was evaluated in vitro and in vivo. In culture, the extent to which the EGF-conjugated GemC18-NPs were taken up by tumor cells was correlated to the EGFR density on the tumor cells, whereas the uptake of untargeted GemC18-NPs exhibited no difference among those same cell lines. The relative cytotoxicity of the EGF-conjugated GemC18-NPs to tumor cells in culture was correlated to EGFR expression as well. In vivo, EGFR-over-expressing MDA-MB-468 tumors in mice treated with the EGF-conjugated GemC18-NPs grew significantly slower than in mice treated with untargeted GemC18-NPs, likely due to that the EGF-GemC18-NPs were more anti-proliferative, anti-angiogenic, and pro-apoptotic. Fluorescence intensity data from ex vivo imaging showed that the EGF on the nanoparticles helped increase the accumulation of the GemC18-NPs into MDA-MB-468 tumors pre-established in mice by more than 2-fold as compared to the un-targeted GemC18-NPs. In conclusion, active targeting of the GemC18-NPs into EGFR-over-expressed tumors can further enhance their anti-tumor activity.


International Journal of Pharmaceutics | 2012

Synthesis and in vitro evaluation of novel lipophilic monophosphorylated gemcitabine derivatives and their nanoparticles

Dharmika S.P. Lansakara-P; B. Leticia Rodriguez; Zhengrong Cui

Gemcitabine hydrochloride (HCl) is approved for the treatment of a wide spectrum of solid tumors. However, the rapid development of resistance often makes gemcitabine less efficacious. In the present study, we synthesized several novel lipophilic monophosphorylated gemcitabine derivatives, incorporated them into solid lipid nanoparticles, and then evaluated their ability to overcome major known gemcitabine resistance mechanisms by evaluating their in vitro cytotoxicities in cancer cells that are deficient in deoxycytidine kinase (dCK), deficient in human equilibrative nucleoside transporter (hENT1), over-expressing ribonucleotide reductase M1 subunit (RRM1), or over-expressing RRM2. In dCK deficient cells, the monophosphorylated gemcitabine derivatives and their nanoparticles were up to 86-fold more cytotoxic than gemcitabine HCl. The majority of the gemcitabine derivatives and their nanoparticles were more cytotoxic than gemcitabine HCl in cells that over-expressing RRM1 or RRM2, and the gemcitabine derivatives in nanoparticles were also resistant to deamination by deoxycytidine deaminase. The gemcitabine derivatives (in nanoparticles) hold a great potential in overcoming gemcitabine resistance.


Cancer Biology & Therapy | 2013

Stearoyl gemcitabine nanoparticles overcome obesity-induced cancer cell resistance to gemcitabine in a mouse postmenopausal breast cancer model.

Rebecca E. De Angel; Jorge Blando; Matthew G. Hogan; Michael A. Sandoval; Dharmika S.P. Lansakara-P; Sarah M. Dunlap; Stephen D. Hursting; Zhengrong Cui

Obesity is associated with increased breast tumor aggressiveness and decreased response to multiple modalities of therapy in postmenopausal women. Delivering cancer chemotherapeutic drugs using nanoparticles has evolved as a promising approach to improve the efficacy of anticancer agents. However, the application of nanoparticles in cancer chemotherapy in the context of obesity has not been studied before. The nucleoside analog gemcitabine is widely used in solid tumor therapy. Previously, we developed a novel stearoyl gemcitabine solid-lipid nanoparticle formulation (GemC18-NPs) and showed that the GemC18-NPs are significantly more effective than gemcitabine in controlling tumor growth in mouse models. In the present study, using ovariectomized diet-induced obese female C57BL/6 mice with orthotopically transplanted MMTV-Wnt-1 mammary tumors as a model of postmenopausal obesity and breast cancer, we discovered that obesity induces tumor cell resistance to gemcitabine. Furthermore, our GemC18-NPs can overcome the obesity-related resistance to gemcitabine chemotherapy. These findings have important clinical implications for cancer chemotherapies involving gemcitabine or other nucleoside analogs in the context of obesity.


Molecular Pharmaceutics | 2013

Antitumor Activity of Tumor-Targeted RNA Replicase-Based Plasmid That Expresses Interleukin-2 in a Murine Melanoma Model

B. Leticia Rodriguez; Jorge Blando; Dharmika S.P. Lansakara-P; Yuriko Kiguchi; John DiGiovanni; Zhengrong Cui

Double-stranded RNA (dsRNA) has multiple antitumor mechanisms that may be used to control tumor growth. Previously we have shown that treatment of solid tumors with a plasmid that encodes Sindbis viral RNA replicase complex, pSIN-β, significantly inhibited the growth of tumors in mice. In the present study, we evaluated the feasibility of further improving the antitumor activity of the pSIN-β plasmid by incorporating interleukin-2 (IL2) gene into the plasmid. The resultant pSIN-IL2 plasmid was delivered to mouse melanoma cells that overexpress the sigma receptor. Here we report that the pSIN-IL2 plasmid was more effective at controlling the growth of B16 melanoma in mice when complexed with sigma receptor-targeted liposomes than with the untargeted liposomes. Importantly, the pSIN-IL2 plasmid was more effective than pSIN-β plasmid at controlling the growth of B16 melanoma in mice, and B16 tumor-bearing mice that were treated with pSIN-IL2 had an elevated number of activated CD4(+), CD8(+), and natural killer cells, as compared to those treated with pSIN-β. The RNA replicase-based, IL2-expressing plasmid may have applications in melanoma gene therapy.


Journal of Pharmacy and Pharmacology | 2013

A nanoparticle depot formulation of 4-(N)-stearoyl gemcitabine shows a strong anti-tumour activity

Saijie Zhu; Xinran Li; Dharmika S.P. Lansakara-P; Amit Kumar; Zhengrong Cui

Depot formulation as a carrier for cytotoxic chemotherapeutic drugs is not well studied. The objective of this study is to test the feasibility of using a subcutaneous depot formulation to administer a cytotoxic anti‐cancer drug for systemic therapy.


Neoplasia | 2016

Synthesis, Characterization, and In Vitro and In Vivo Evaluations of 4-(N)-Docosahexaenoyl 2′, 2′-Difluorodeoxycytidine with Potent and Broad-Spectrum Antitumor Activity

Youssef W. Naguib; Dharmika S.P. Lansakara-P; Laura M. Lashinger; B. Leticia Rodriguez; Solange Valdes; Mengmeng Niu; Abdulaziz M. Aldayel; Lan Peng; Stephen D. Hursting; Zhengrong Cui

In this study, a new compound, 4-(N)-docosahexaenoyl 2′, 2′-difluorodeoxycytidine (DHA-dFdC), was synthesized and characterized. Its antitumor activity was evaluated in cell culture and in mouse models of pancreatic cancer. DHA-dFdC is a poorly soluble, pale yellow waxy solid, with a molecular mass of 573.3 Da and a melting point of about 96°C. The activation energy for the degradation of DHA-dFdC in an aqueous Tween 80–based solution is 12.86 kcal/mol, whereas its stability is significantly higher in the presence of vitamin E. NCI-60 DTP Human Tumor Cell Line Screening revealed that DHA-dFdC has potent and broad-spectrum antitumor activity, especially in leukemia, renal, and central nervous system cancer cell lines. In human and murine pancreatic cancer cell lines, the IC50 value of DHA-dFdC was up to 105-fold lower than that of dFdC. The elimination of DHA-dFdC in mouse plasma appeared to follow a biexponential model, with a terminal phase t1/2 of about 58 minutes. DHA-dFdC significantly extended the survival of genetically engineered mice that spontaneously develop pancreatic ductal adenocarcinoma. In nude mice with subcutaneously implanted human Panc-1 pancreatic tumors, the antitumor activity of DHA-dFdC was significantly stronger than the molar equivalent of dFdC alone, DHA alone, or the physical mixture of them (1:1, molar ratio). DHA-dFdC also significantly inhibited the growth of Panc-1 tumors orthotopically implanted in the pancreas of nude mice, whereas the molar equivalent dose of dFdC alone did not show any significant activity. DHA-dFdC is a promising compound for the potential treatment of cancers in organs such as the pancreas.


Oncotarget | 2017

Oral 4-( N )-stearoyl gemcitabine nanoparticles inhibit tumor growth in mouse models

Caixia Wang; Yuanqiang Zheng; Michael A. Sandoval; Solange Valdes; Zhe Chen; Dharmika S.P. Lansakara-P; Maolin Du; Yanchun Shi; Zhengrong Cui

In spite of recent advances in targeted tumor therapy, systemic chemotherapy with cytotoxic agents remains a vital cancer treatment modality. Gemcitabine is a nucleoside analog commonly used in the treatment of various solid tumors, but an oral gemcitabine dosage form remain unavailable. Previously, we developed the 4-(N)-stearoyl gemcitabine solid lipid nanoparticles (GemC18-SLNs) by incorporating 4-(N)-stearoyl gemcitabine (GemC18), an amide prodrug of gemcitabine, into solid lipid nanoparticles. GemC18-SLNs, when administered intravenously, showed strong antitumor activity against various human and mouse tumors in mouse models. In the present study, we defined the plasma pharmacokinetics of gemcitabine when GemC18-SLNs were given orally to healthy mice and evaluated the antitumor activity of GemC18-SLNs when given orally in mouse models of lung cancer. In mice orally gavaged with GemC18-SLNs, plasma gemcitabine concentration followed an absorption phase and then clearance phase, with a Tmax of ~2 h. The absolute oral bioavailability of gemcitabine in the GemC18-SLNs was ~70% (based on AUC0-24 h values). In mice with pre-established tumors (i.e. mouse TC-1 or LLC lung cancer cells), oral GemC18-SLNs significantly inhibited the tumor growth and increased mouse survival time, as compared to the molar equivalent dose of gemcitabine hydrochloride or GemC18 in vegetable oil or in Tween 20. Immunohistostaining revealed that oral GemC18-SLNs also have significant antiproliferative, antiangiogenic, and proapoptotic activity in LLC tumors. Formulating a lipophilic amide prodrug of gemcitabine into solid lipid nanoparticles may represent a viable approach toward developing a safe and efficacious gemcitabine oral dosage form.


Journal of Controlled Release | 2013

Just getting into cells is not enough: Mechanisms underlying 4-(N)-stearoyl gemcitabine solid lipid nanoparticle's ability to overcome gemcitabine resistance caused by RRM1 overexpression

Piyanuch Wonganan; Dharmika S.P. Lansakara-P; Saijie Zhu; Melisande Holzer; Michael A. Sandoval; Mangalika Warthaka; Zhengrong Cui

Collaboration


Dive into the Dharmika S.P. Lansakara-P's collaboration.

Top Co-Authors

Avatar

Zhengrong Cui

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Michael A. Sandoval

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

B. Leticia Rodriguez

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Gary A. Pope

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Upali P. Weerasooriya

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Brian R. Sloat

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

John DiGiovanni

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit Kumar

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jorge Blando

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge