B. R. Cullen
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. R. Cullen.
Animal Production Science | 2008
I. R. Johnson; D. F. Chapman; V. O. Snow; R. J. Eckard; A. J. Parsons; M. G. Lambert; B. R. Cullen
DairyMod and EcoMod, which are biophysical pasture-simulation models for Australian and New Zealand grazing systems, are described. Each model has a common underlying biophysical structure, with the main differences being in their available management options. The third model in this group is the SGS Pasture Model, which has been previously described, and these models are referred to collectively as ‘the model’. The model includes modules for pasture growth and utilisation by grazing animals, water and nutrient dynamics, animal physiology and production and a range of options for pasture management, irrigation and fertiliser application. Up to 100 independent paddocks can be defined to represent spatial variation within a notional farm. Paddocks can have different soil types, nutrient status, pasture species, fertiliser and irrigation management, but are subject to the same weather. Management options include commonly used rotational grazing management strategies and continuous grazing with fixed or variable stock numbers. A cutting regime simulates calculation of seasonal pasture growth rates. The focus of the present paper is on recent developments to the management routines and nutrient dynamics, including organic matter, inorganic nutrients, leaching and gaseous nitrogen losses, and greenhouse gases. Some model applications are presented and the role of the model in research projects is discussed.
Crop & Pasture Science | 2009
B. R. Cullen; I. R. Johnson; R. J. Eckard; G. M. Lodge; R. G. Walker; Rp Rawnsley; M. R. McCaskill
Climate change projections for Australia predict increasing temperatures, changes to rainfall patterns, and elevated atmospheric carbon dioxide (CO2) concentrations. The aims of this study were to predict plant production responses to elevated CO2 concentrations using the SGS Pasture Model and DairyMod, and then to quantify the effects of climate change scenarios for 2030 and 2070 on predicted pasture growth, species composition, and soil moisture conditions of 5 existing pasture systems in climates ranging from cool temperate to subtropical, relative to a historical baseline. Three future climate scenarios were created for each site by adjusting historical climate data according to temperature and rainfall change projections for 2030, 2070 mid-and 2070 high-emission scenarios, using output from the CSIRO Mark 3 global climate model. In the absence of other climate changes, mean annual pasture production at an elevated CO2 concentration of 550 ppm was predicted to be 24-29% higher than at 380 ppm CO2 in temperate (C-3) species-dominant pastures in southern Australia, with lower mean responses in a mixed C-3/C-4 pasture at Barraba in northern New South Wales (17%) and in a C-4 pasture at Mutdapilly in south-eastern Queensland (9%). In the future climate scenarios at the Barraba and Mutdapilly sites in subtropical and subhumid climates, respectively, where climate projections indicated warming of up to 4.4 degrees C, with little change in annual rainfall, modelling predicted increased pasture production and a shift towards C-4 species dominance. In Mediterranean, temperate, and cool temperate climates, climate change projections indicated warming of up to 3.3 degrees C, with annual rainfall reduced by up to 28%. Under future climate scenarios at Wagga Wagga, NSW, and Ellinbank, Victoria, our study predicted increased winter and early spring pasture growth rates, but this was counteracted by a predicted shorter spring growing season, with annual pasture production higher than the baseline under the 2030 climate scenario, but reduced by up to 19% under the 2070 high scenario. In a cool temperate environment at Elliott, Tasmania, annual production was higher than the baseline in all 3 future climate scenarios, but highest in the 2070 mid scenario. At the Wagga Wagga, Ellinbank, and Elliott sites the effect of rainfall declines on pasture production was moderated by a predicted reduction in drainage below the root zone and, at Ellinbank, the use of deeper rooted plant systems was shown to be an effective adaptation to mitigate some of the effect of lower rainfall.
Crop & Pasture Science | 2008
B. R. Cullen; R. J. Eckard; M. N. Callow; I. R. Johnson; D. F. Chapman; Rp Rawnsley; S. C. Garcia; T. A. White; V. O. Snow
DairyMod, EcoMod, and the SGS Pasture Model are mechanistic biophysical models developed to explore scenarios in grazing systems. The aim of this manuscript was to test the ability of the models to simulate net herbage accumulation rates of ryegrass-based pastures across a range of environments and pasture management systems in Australia and New Zealand. Measured monthly net herbage accumulation rate and accumulated yield data were collated from ten grazing system experiments at eight sites ranging from cool temperate to subtropical environments. The local climate, soil, pasture species, and management (N fertiliser, irrigation, and grazing or cutting pattern) were described in the model for each site, and net herbage accumulation rates modelled. The model adequately simulated the monthly net herbage accumulation rates across the range of environments, based on the summary statistics and observed patterns of seasonal growth, particularly when the variability in measured herbage accumulation rates was taken into account. Agreement between modelled and observed growth rates was more accurate and precise in temperate than in subtropical environments, and in winter and summer than in autumn and spring. Similarly, agreement between predicted and observed accumulated yields was more accurate than monthly net herbage accumulation. Different temperature parameters were used to describe the growth of perennial ryegrass cultivars and annual ryegrass; these differences were in line with observed growth patterns and breeding objectives. Results are discussed in the context of the difficulties in measuring pasture growth rates and model limitations.
Crop & Pasture Science | 2007
Andrew Ash; Peter C. McIntosh; B. R. Cullen; Peter Carberry; Mark Stafford Smith
Climate variability has an enormous impact on agricultural productivity, rural livelihoods, and economics at farm, regional, and national scales. An every-day challenge facing farmers is to make management decisions in the face of this climate variability. Being able to minimise losses in droughts and take advantage of favourable seasons is the promise of seasonal climate forecasts. The criteria for their adoption depends on what variables are forecast, their accuracy, the likely economic and/or natural resource benefits and how well they are communicated. In reviewing how current seasonal climate forecasts meet these criteria, it is clear that they offer considerable potential to buffer the effects of climate variability in agriculture, particularly in regions that have high levels of inter-annual rainfall variability and are strongly influenced by El Nino and La Nina events. However, the current skill, lead time, relevance to agricultural decisions, and communication techniques are not well enough advanced and/or integrated to lead to widespread confidence and adoption by farmers. The current challenges are to continue to improve forecast reliability and to better communicate the probabilistic outputs of seasonal climate forecasts to decision makers.
Animal Production Science | 2009
D. F. Chapman; B. R. Cullen; I. R. Johnson; D. Beca
The profitability of dairy farms in Australia and New Zealand is closely related to the amount of pasture dry matter consumed per hectare per year. There is variability in the pasture growth curve within years (seasonal variation) and between years (interannual variation) in all dairy regions in both countries. Therefore, the biological efficiency of production systems depends on the accuracy and timeliness of the many strategic and tactical decisions that influence the balance between feed supply and demand over an annual cycle. In the case of interannual variation, decisions are made with only limited quantitative information on the range of possible pasture growth outcomes. To address this limitation, we used the biophysical simulation model ‘DairyMod’ to estimate mean monthly herbage accumulation rates of annual or perennial ryegrass-based pastures in 100 years (1907–2006) for five Australian sites (Kyabram in northern Victoria, Terang in south-west Victoria, Ellinbank in Gippsland, Elliott in north-west Tasmania and Vasse in south-west Western Australia) and in 35 years (1972–2006) for three sites in New Zealand (Hamilton in the Waikato, Palmerston North in the Manawatu and Winchmore in Canterbury). The aim was to evaluate whether or not a probabilistic approach to the analysis of pasture growth could provide useful information to support decision making. For the one site where annual ryegrass was simulated, Vasse, the difference between the 25th and 75th percentile years was 20 kg DM/ha.day or less in all months when pasture growth occurred. Irrigation at Kyabram and Winchmore also resulted in a narrow range of growth rates in most months. For non-irrigated sites, the 25th–75th percentile range was narrow (10–15 kg DM/ha.day) from May or June through to September or October, because plant available soil water was adequate to support perennial ryegrass growth, and the main source of interannual variability was variation in temperature. Outside of these months, however, variability in growth was large. There was a positive relationship between total annual herbage accumulation rate and mean stocking for four southern Australian regions (northern Victoria, south-west Victoria, Gippsland and Tasmania), but there was evidence of a negative relationship between the co-efficient of variation in pasture growth and stocking rate. The latter suggests that farmers do account for risk in pasture supply in their stocking rate decisions. However, for the one New Zealand region included in this analysis, Waikato, stocking rate was much higher than would be expected based on the variability in pasture growth, indicating that farmers in this region have well defined decision rules for coping with feed deficits or surpluses. Model predictions such as those presented here are one source of information that can support farm management decision making, but should always be coupled with published data, direct experience, and other relevant information to analyse risk for individual farm businesses.
Australian Journal of Experimental Agriculture | 2003
P. Sanford; B. R. Cullen; P. M. Dowling; D. F. Chapman; D. L. Garden; G. M. Lodge; M. H. Andrew; P. E. Quigley; S. R. Murphy; W. Mc G. King; W. H. Johnston; D. R. Kemp
The Sustainable Grazing Systems (SGS) National Experiment (NE) Pasture Theme explored factors that influenced annual herbage accumulation and perennial grass and legume content across the NE sites, in the high rainfall zone (HRZ, >600 mm/year annual rainfall) of southern Australia using multi-variate analysis and the SGS Pasture Model. Annual rainfall was a poor predictor of annual herbage accumulation. The length of growing season accounted for 30% of the variation in annual herbage accumulation. Much of the remaining 70% of variation in annual herbage accumulation was explained by soil Olsen P, the proportion of native species in the pasture and stocking rate, together with interactions among other factors including legume content. Simulated effects of set stocking and rotational grazing on herbage accumulation using the SGS Pasture Model, predicted that rotational grazing was unlikely to result in large increases in herbage accumulation. In contrast, it was predicted that the adoption of deep-rooted C3 and C4 perennial grasses could provide useful increases in herbage accumulation. Perennial grass content and basal cover were both significantly influenced by growing season length (P<0.001), grazing method (P<0.001) and an interaction between stocking rate and soil pH (P = 0.002). These analyses suggested that to maintain or improve the perennial grass component of a pasture at medium–high stocking rates, it was crucial to adopt grazing strategies that included rotation or resting. Perennial grass percent also significantly (P<0.001) increased in response to ameliorating the soil pH. Legume content of pastures significantly (P<0.001) increased in response to set stocking and increased stocking rate. To be botanically stable and productive, sown pastures based on perennial grasses in the HRZ of southern Australia will need to be grazed at high stocking rates (15–23 DSE/ha) in combination with rotational grazing or resting, and with adequate soil P. Additional gains in production and stability could be obtained by ensuring an adequate legume component, including a C4 perennial grass and ameliorating soil acidity. Pastures based on native perennial grasses may require lower soil P and more conservative stocking rates, depending on species.
Australian Journal of Experimental Agriculture | 2003
J. F. Graham; B. R. Cullen; G. M. Lodge; M. H. Andrew; B. P. Christy; P. J. Holst; X. Wang; S. R. Murphy; A. N. Thompson
The effects of various grazing management systems on sown, naturalised, and native pastures were studied at 6 different locations in the temperate high rainfall zone (HRZ, >600 mm rainfall/year) of southern Australia, as part of the Sustainable Grazing Systems (SGS) Program. The treatments examined had different pasture species and fertiliser management, with grazing method ranging from set stocking (continuous grazing) to rotation with rests based on pre- and post-grazing herbage mass or season and plant phenology. Sites were located at: Albany, Western Australia; Manilla, Barraba, Nundle, New South Wales; (grazed by wethers); and Carcoar, New South Wales; Maindample, Ruffy, north-east Victoria; Vasey, western Victoria; (grazed by ewes and lambs). Grazing method significantly (P 0.05), when a growing season index (P 0.05) factors included solar radiation, annual average temperature, fertiliser applied in the current year, and average annual perennial and broadleaf percent composition. The implications of these data for productivity and sustainability (as assessed by perenniality and water use) were encouraging. Generally, there were positive relationships between increased stocking rate and the probability of achieving a zero mm soil water surplus in winter, and between increased productivity and the proportion of perennial grass species where extremes of treatments were compared at each site. The results indicate that stocking rate can be increased without jeopardising sustainability, that grazing management can bring about more sustainable pastures, that there is scope to increase productivity particularly through increasing soil fertility, and growing season length can be used to predict potential carrying capacity. These are positive outcomes that graziers in the HRZ of southern Australia can use to enhance productivity (thus profitability) and sustainability.
Crop & Pasture Science | 2009
Rp Rawnsley; B. R. Cullen; Lr Turner; Dj Donaghy; Mj Freeman; Km Christie
In the cool temperate dairy regions of Tasmania, there is heavy reliance on irrigation to maximise pasture performance by ensuring that plants do not suffer water stress. Consequently, irrigation water has often been applied at a greater amount than plant water requirements, resulting in low efficiencies. An irrigation experiment was undertaken in north-western Tasmania between October 2007 and April 2008, examining the effect of deficit irrigation treatments on pasture growth and water-use efficiency. A rainfall deficit (potential evapotranspiration minus rainfall) of 20 mm was implemented to schedule irrigation, at which point 20, 16, 12, 8, or 0 mm of irrigation water was applied, referred to as treatments I100%, I80%, I60%, I40%, and I0%, respectively. The trial was a randomised complete block design with 4 replications. There were 21 irrigation events between October and April. The experimental area was grazed by 60 Holstein Friesian heifers at a grazing interval coinciding with emergence of 2.5–3.0 new ryegrass leaves/tiller of the I100% treatment. Cumulative pasture consumption for the irrigated period was 9.2, 8.9, 7.6, 6.9, and 3.7 t dry matter (DM)/ha for the I100%, I80%, I60%, I40%, and I0% treatments, respectively. The resulting marginal irrigation water-use index (MIWUI; marginal production due to irrigation) was 1.29, 1.54, 1.55, and 1.87 t DM/ML, for the I100%, I80%, I60%, and I40% treatments, respectively. The results of this study were modelled using the biophysical model DairyMod, with strong agreement between observed and modelled data. DairyMod was then used to simulate the MIWUI for 5 differing dairy regions of Tasmania using 40 years of climatic data (1968–2007) under 3 differing nitrogen management strategies by the 5 irrigation treatments. The modelling indicated that a MIWUI greater than 2 t DM/ML can be achieved in all regions. The current study has shown that the opportunity exists for irrigated pastoral systems to better manage an increasingly scarce resource and substantially improve responses to irrigation.
Crop & Pasture Science | 2012
B. R. Cullen; R. J. Eckard; Rp Rawnsley
Abstract. Climate change impact analysis relies largely on down-scaling climate projections to develop daily time-step, future climate scenarios for use in agricultural systems models. This process of climate down-scaling is complicated by differences in projections from greenhouse gas emission pathways and, in particular, the wide variation between global climate model outputs. In this study, a sensitivity analysis was used to test the resistance of pasture production to the incremental changes in climate predicted over the next 60 years in southern Australia. Twenty-five future climate scenarios were developed by scaling the historical climate by increments of 0, 1, 2, 3 and 4°C (with corresponding changes to atmospheric carbon dioxide concentrations and relative humidity) and rainfall by +10, 0, –10, –20 and –30%. The resistance of annual and seasonal pasture production to these climatic changes was simulated at six sites in south-eastern Australia. The sites spanned a range of climates from high rainfall, cool temperate in north-west Tasmania to the lower rainfall, temperate environment of Wagga Wagga in southern New South Wales. Local soil and pasture types were simulated at each site using the Sustainable Grazing Systems Pasture model. Little change or higher annual pasture production was simulated at all sites with 1°C warming, but varying responses were observed with further warming. In a pasture containing a C4 native grass at Wagga Wagga, annual pasture production increased with further warming, while production was stable or declined in pasture types based on C3 species in temperate environments. In a cool temperate region pasture production increased with up to 2°C warming. Compared with the historical baseline climate, warmer and drier climate scenarios led to lower pasture production, with summer and autumn growth being most affected, although there was some variation between sites. At all sites winter production was increased under all warming scenarios. Inter-annual variation in pasture production, expressed as the coefficient of variation, increased in the lower rainfall scenarios where production was simulated to decline, suggesting that changing rainfall patterns are likely to affect the variability in pasture production more than increasing temperatures. Together the results indicate that annual pasture production is resistant to climatic changes of up to 2°C warming. The approach used in this study can be used to test the sensitivity of agricultural production to climatic changes; however, it does not incorporate changes in seasonal and extreme climatic events that may also have significant impacts on these systems. Nonetheless, the approach can be used to identify strategies that may increase resilience of agricultural systems to climate change such as the incorporation of C4 species into the pasture base.
Animal Production Science | 2005
B. R. Cullen; D. F. Chapman; P. E. Quigley
Phalaris tiller and plant population characteristics were monitored in sown Australian phalaris–subterranean clover pastures over 3 seasons (1999–2001) to determine the impact of fertiliser and grazing method on phalaris persistence in south-western Victoria. Four grazing systems were tested: set-stocked, low phosphorus (P) fertiliser input (SS low P); set-stocked, high P fertiliser input (SS high P); simple rotation, high P (RG 4 paddock); and intensive rotation, high P (RG intensive). Within each year there was no significant difference in tiller density (tillers/m2) between the grazing systems. Phalaris tiller density declined (P<0.05) on all treatments from June 1999 to June 2001. There was a significant effect of grazing method on tiller size (mg/tiller); tillers growing under rotational grazing systems were much larger than those in set-stocked systems. There was some evidence of tiller size density compensation across the grazing management treatments; however, the slope of the trade-off between tiller size and density was not as steep as those reported for other species. In general, the phalaris tiller populations under rotationally grazed treatments were characterised by lower density per m2 of phalaris clump and larger size, compared with the set-stocked treatments. Both the phalaris tiller and clump density declined at a similar rate on all treatments during this experiment, suggesting that there was some limitation to phalaris persistence irrespective of grazing system. Measured leaf appearance intervals (days/leaf) indicated that a lack of tillering sites was not a contributing factor in the observed tiller density decline. It is likely that the combination of high grazing pressure, below average rainfall and subsoil acidity contributed to the observed phalaris population decline.