Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Selma Mohammed is active.

Publication


Featured researches published by B. Selma Mohammed.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity

Elisa Fabbrini; Faidon Magkos; B. Selma Mohammed; Terri Pietka; Nada A. Abumrad; Bruce W. Patterson; Adewole L. Okunade; Samuel Klein

Visceral adipose tissue (VAT) is an important risk factor for obesity-related metabolic disorders. Therefore, a reduction in VAT has become a key goal in obesity management. However, VAT is correlated with intrahepatic triglyceride (IHTG) content, so it is possible that IHTG, not VAT, is a better marker of metabolic disease. We determined the independent association of IHTG and VAT to metabolic function, by evaluating groups of obese subjects, who differed in IHTG content (high or normal) but matched on VAT volume or differed in VAT volume (high or low) but matched on IHTG content. Stable isotope tracer techniques and the euglycemic–hyperinsulinemic clamp procedure were used to assess insulin sensitivity and very-low-density lipoprotein–triglyceride (VLDL-TG) secretion rate. Tissue biopsies were obtained to evaluate cellular factors involved in ectopic triglyceride accumulation. Hepatic, adipose tissue and muscle insulin sensitivity were 41, 13, and 36% lower (P < 0.01), whereas VLDL-triglyceride secretion rate was almost double (P < 0.001), in subjects with higher than normal IHTG content, matched on VAT. No differences in insulin sensitivity or VLDL-TG secretion were observed between subjects with different VAT volumes, matched on IHTG content. Adipose tissue CD36 expression was lower (P < 0.05), whereas skeletal muscle CD36 expression was higher (P < 0.05), in subjects with higher than normal IHTG. These data demonstrate that IHTG, not VAT, is a better marker of the metabolic derangements associated with obesity. Furthermore, alterations in tissue fatty acid transport could be involved in the pathogenesis of ectopic triglyceride accumulation by redirecting plasma fatty acid uptake from adipose tissue toward other tissues.


Gastroenterology | 2008

Liver, Muscle, and Adipose Tissue Insulin Action Is Directly Related to Intrahepatic Triglyceride Content in Obese Subjects

Kevin M. Korenblat; Elisa Fabbrini; B. Selma Mohammed; Samuel Klein

BACKGROUND & AIMS Nonalcoholic fatty liver disease is associated with insulin resistance and diabetes. The purpose of this study was to determine the relationship between intrahepatic triglyceride (IHTG) content and insulin action in liver (suppression of glucose production), skeletal muscle (stimulation of glucose uptake), and adipose tissue (suppression of lipolysis) in nondiabetic obese subjects. METHODS A euglycemic-hyperinsulinemic clamp procedure and stable isotopically labeled tracer infusions were used to assess insulin action, and magnetic resonance spectroscopy was used to determine IHTG content, in 42 nondiabetic obese subjects (body mass index, 36 +/- 4 kg/m(2)) who had a wide range of IHTG content (1%-46%). RESULTS Hepatic insulin sensitivity, assessed as a function of glucose production rate and plasma insulin concentration, was inversely correlated with IHTG content (r = -0.599; P < .001). The ability of insulin to suppress fatty acid release from adipose tissue and to stimulate glucose uptake by skeletal muscle were also inversely correlated with IHTG content (adipose tissue: r = -0.590, P < .001; skeletal muscle: r = -0.656, P < .001). Multivariate linear regression analyses found that IHTG content was the best predictor of insulin action in liver, skeletal muscle, and adipose tissue, independent of body mass index and percent body fat, and accounted for 34%, 42%, and 44% of the variability in these tissues, respectively (P < .001 for each model). CONCLUSIONS These results show that progressive increases in IHTG content are associated with progressive impairment of insulin action in liver, skeletal muscle, and adipose tissue in nondiabetic obese subjects. Therefore, nonalcoholic fatty liver disease should be considered part of a multiorgan system derangement in insulin sensitivity.


Diabetes | 2009

Endoplasmic Reticulum Stress is Reduced in Tissues of Obese Subjects after Weight Loss

Margaret F. Gregor; Ling Yang; Elisa Fabbrini; B. Selma Mohammed; J. Christopher Eagon; Gökhan S. Hotamisligil; Samuel Klein

OBJECTIVE—Obesity is associated with insulin resistance and type 2 diabetes, although the mechanisms linking these pathologies remain undetermined. Recent studies in rodent models revealed endoplasmic reticulum (ER) stress in adipose and liver tissues and demonstrated that ER stress could cause insulin resistance. Therefore, we tested whether these stress pathways were also present in obese human subjects and/or regulated by weight loss. RESEARCH DESIGN AND METHODS—Eleven obese men and women (BMI 51.3 ± 3.0 kg/m2) were studied before and 1 year after gastric bypass (GBP) surgery. We examined systemic insulin sensitivity using hyperinsulinemic-euglycemic clamp studies before and after surgery and collected subcutaneous adipose and liver tissues to examine ER stress markers. RESULTS—Subjects lost 39 ± 9% body wt at 1 year after GBP surgery (P < 0.001), which was associated with a marked improvement in hepatic, skeletal muscle, and adipose tissue insulin sensitivity. Markers of ER stress in adipose tissue significantly decreased with weight loss. Specifically, glucose-regulated protein 78 (Grp78) and spliced X-box binding protein-1 (sXBP-1) mRNA levels were reduced, as were phosphorylated elongation initiation factor 2α (eIF2α) and stress kinase c-Jun NH2-terminal kinase 1 (JNK1) (all P values <0.05). Liver sections from a subset of subjects showed intense staining for Grp78 and phosphorylated eIF2α before surgery, which was reduced in post-GBP sections. CONCLUSIONS—This study presents important evidence that ER stress pathways are present in selected tissues of obese humans and that these signals are regulated by marked weight loss and metabolic improvement. Hence, this suggests the possibility of a relationship between obesity-related ER stress and metabolic dysfunction in obese humans.


Annals of Internal Medicine | 2010

Weight and Metabolic Outcomes After 2 Years on a Low-Carbohydrate Versus Low-Fat Diet: A Randomized Trial

Gary D. Foster; Holly R. Wyatt; James O. Hill; Angela P Makris; Diane L. Rosenbaum; Carrie Brill; Richard I. Stein; B. Selma Mohammed; Bernard V. Miller; Daniel J. Rader; Babette S. Zemel; Thomas A. Wadden; Thomas TenHave; Craig Newcomb; Samuel Klein

BACKGROUND Previous studies comparing low-carbohydrate and low-fat diets have not included a comprehensive behavioral treatment, resulting in suboptimal weight loss. OBJECTIVE To evaluate the effects of 2-year treatment with a low-carbohydrate or low-fat diet, each of which was combined with a comprehensive lifestyle modification program. DESIGN Randomized parallel-group trial. (ClinicalTrials.gov registration number: NCT00143936) SETTING 3 academic medical centers. PATIENTS 307 participants with a mean age of 45.5 years (SD, 9.7 years) and mean body mass index of 36.1 kg/m(2) (SD, 3.5 kg/m(2)). INTERVENTION A low-carbohydrate diet, which consisted of limited carbohydrate intake (20 g/d for 3 months) in the form of low-glycemic index vegetables with unrestricted consumption of fat and protein. After 3 months, participants in the low-carbohydrate diet group increased their carbohydrate intake (5 g/d per wk) until a stable and desired weight was achieved. A low-fat diet consisted of limited energy intake (1200 to 1800 kcal/d; <or=30% calories from fat). Both diets were combined with comprehensive behavioral treatment. MEASUREMENTS Weight at 2 years was the primary outcome. Secondary measures included weight at 3, 6, and 12 months and serum lipid concentrations, blood pressure, urinary ketones, symptoms, bone mineral density, and body composition throughout the study. RESULTS Weight loss was approximately 11 kg (11%) at 1 year and 7 kg (7%) at 2 years. There were no differences in weight, body composition, or bone mineral density between the groups at any time point. During the first 6 months, the low-carbohydrate diet group had greater reductions in diastolic blood pressure, triglyceride levels, and very-low-density lipoprotein cholesterol levels, lesser reductions in low-density lipoprotein cholesterol levels, and more adverse symptoms than did the low-fat diet group. The low-carbohydrate diet group had greater increases in high-density lipoprotein cholesterol levels at all time points, approximating a 23% increase at 2 years. LIMITATION Intensive behavioral treatment was provided, patients with dyslipidemia and diabetes were excluded, and attrition at 2 years was high. CONCLUSION Successful weight loss can be achieved with either a low-fat or low-carbohydrate diet when coupled with behavioral treatment. A low-carbohydrate diet is associated with favorable changes in cardiovascular disease risk factors at 2 years. PRIMARY FUNDING SOURCE National Institutes of Health.


The American Journal of Clinical Nutrition | 2011

Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial

Gordon I. Smith; Philip J. Atherton; Dominic N. Reeds; B. Selma Mohammed; Debbie Rankin; Michael J. Rennie; Bettina Mittendorfer

BACKGROUND Loss of muscle mass with aging is a major public health concern. Omega-3 (n-3) fatty acids stimulate protein anabolism in animals and might therefore be useful for the treatment of sarcopenia. However, the effect of omega-3 fatty acids on human protein metabolism is unknown. OBJECTIVE The objective of this study was to evaluate the effect of omega-3 fatty acid supplementation on the rate of muscle protein synthesis in older adults. DESIGN Sixteen healthy, older adults were randomly assigned to receive either omega-3 fatty acids or corn oil for 8 wk. The rate of muscle protein synthesis and the phosphorylation of key elements of the anabolic signaling pathway were evaluated before and after supplementation during basal, postabsorptive conditions and during a hyperaminoacidemic-hyperinsulinemic clamp. RESULTS Corn oil supplementation had no effect on the muscle protein synthesis rate and the extent of anabolic signaling element phosphorylation in muscle. Omega-3 fatty acid supplementation had no effect on the basal rate of muscle protein synthesis (mean ± SEM: 0.051 ± 0.005%/h compared with 0.053 ± 0.008%/h before and after supplementation, respectively; P = 0.80) but augmented the hyperaminoacidemia-hyperinsulinemia-induced increase in the rate of muscle protein synthesis (from 0.009 ± 0.005%/h above basal values to 0.031 ± 0.003%/h above basal values; P < 0.01), which was accompanied by greater increases in muscle mTOR(Ser2448) (P = 0.08) and p70s6k(Thr389) (P < 0.01) phosphorylation. CONCLUSION Omega-3 fatty acids stimulate muscle protein synthesis in older adults and may be useful for the prevention and treatment of sarcopenia. This trial was registered at clinical trials.gov as NCT00794079.


Diabetes | 2010

Tauroursodeoxycholic Acid May Improve Liver and Muscle but Not Adipose Tissue Insulin Sensitivity in Obese Men and Women

Marleen Kars; Ling Yang; Margaret F. Gregor; B. Selma Mohammed; Terri Pietka; Brian N. Finck; Bruce W. Patterson; Jay D. Horton; Bettina Mittendorfer; Goekhan S. Hotamisligil; Samuel Klein

OBJECTIVE Insulin resistance is commonly associated with obesity. Studies conducted in obese mouse models found that endoplasmic reticulum (ER) stress contributes to insulin resistance, and treatment with tauroursodeoxycholic acid (TUDCA), a bile acid derivative that acts as a chemical chaperone to enhance protein folding and ameliorate ER stress, increases insulin sensitivity. The purpose of this study was to determine the effect of TUDCA therapy on multiorgan insulin action and metabolic factors associated with insulin resistance in obese men and women. RESEARCH DESIGN AND METHODS Twenty obese subjects ([means ± SD] aged 48 ± 11 years, BMI 37 ± 4 kg/m2) were randomized to 4 weeks of treatment with TUDCA (1,750 mg/day) or placebo. A two-stage hyperinsulinemic-euglycemic clamp procedure in conjunction with stable isotopically labeled tracer infusions and muscle and adipose tissue biopsies were used to evaluate in vivo insulin sensitivity, cellular factors involved in insulin signaling, and cellular markers of ER stress. RESULTS Hepatic and muscle insulin sensitivity increased by ∼30% (P < 0.05) after treatment with TUDCA but did not change after placebo therapy. In addition, therapy with TUDCA, but not placebo, increased muscle insulin signaling (phosphorylated insulin receptor substrateTyr and AktSer473 levels) (P < 0.05). Markers of ER stress in muscle or adipose tissue did not change after treatment with either TUDCA or placebo. CONCLUSIONS These data demonstrate that TUDCA might be an effective pharmacological approach for treating insulin resistance. Additional studies are needed to evaluate the target cells and mechanisms responsible for this effect.


The Journal of Clinical Endocrinology and Metabolism | 2010

Effect of Fenofibrate and Niacin on Intrahepatic Triglyceride Content, Very Low-Density Lipoprotein Kinetics, and Insulin Action in Obese Subjects with Nonalcoholic Fatty Liver Disease

Elisa Fabbrini; B. Selma Mohammed; Kevin M. Korenblat; Faidon Magkos; Jennifer McCrea; Bruce W. Patterson; Samuel Klein

CONTEXT Nonalcoholic fatty liver disease is associated with risk factors for cardiovascular disease, particularly increased plasma triglyceride (TG) concentrations and insulin resistance. Fenofibrate and extended release nicotinic acid (Niaspan) are used to treat hypertriglyceridemia and can affect fatty acid oxidation and plasma free fatty acid concentrations, which influence intrahepatic triglyceride (IHTG) content and metabolic function. OBJECTIVE The objective of the study was to determine the effects of fenofibrate and nicotinic acid therapy on IHTG content and cardiovascular risk factors. EXPERIMENTAL DESIGN AND MAIN OUTCOME MEASURES: We conducted a randomized, controlled trial to determine the effects of fenofibrate (8 wk, 200 mg/d), Niaspan (16 wk, 2000 mg/d), or placebo (8 wk) on IHTG content, very low-density lipoprotein (VLDL) kinetics, and insulin sensitivity. SETTING AND PARTICIPANTS Twenty-seven obese subjects with nonalcoholic fatty liver disease (body mass index 36 +/- 1 kg/m(2), IHTG 23 +/- 2%) were studied at Washington University. RESULTS Neither fenofibrate nor Niaspan affected IHTG content, but both decreased plasma TG, VLDL-TG, and VLDL-apolipoprotein B concentrations (P < 0.05). Fenofibrate increased VLDL-TG clearance from plasma (33 to 54 ml/min; P < 0.05) but not VLDL-TG secretion. Niaspan decreased VLDL-TG secretion (27 to 15 micromol/min; P < 0.05) without affecting clearance. Both fenofibrate and Niaspan decreased VLDL-apolipoprotein B secretion (1.6 to 1.2 and 1.3 to 0.9 nmol/min, respectively; P < 0.05). Niaspan reduced hepatic, adipose tissue, and muscle insulin sensitivity (P < 0.05), whereas fenofibrate had no effect on insulin action. CONCLUSIONS Fenofibrate and Niaspan decrease plasma VLDL-TG concentration without altering IHTG content. However, the mechanism responsible for the change in VLDL-TG concentration is different for each drug; fenofibrate increases plasma VLDL-TG clearance, whereas nicotinic acid decreases VLDL-TG secretion.


Journal of the American College of Cardiology | 2009

Effect of Moderate Diet-Induced Weight Loss and Weight Regain on Cardiovascular Structure and Function

Lisa de las Fuentes; Alan D. Waggoner; B. Selma Mohammed; Richard I. Stein; Bernard V. Miller; Gary D. Foster; Holly R. Wyatt; Samuel Klein; Victor G. Dávila-Román

OBJECTIVES The objective of this prospective, single-site, 2-year dietary intervention study was to evaluate the effects of moderate weight reduction and subsequent partial weight regain on cardiovascular structure and function. BACKGROUND Obesity is associated with adverse cardiac and vascular structural and functional alterations. METHODS Sixty obese subjects (age 46 + or - 10 years, body mass index 37 + or - 3 kg/m(2)) were evaluated during their participation in a weight loss study. Cardiac and vascular ultrasound studies were performed at baseline and at 3, 6, 12, and 24 months after start of intervention. RESULTS Forty-seven subjects (78%) completed the entire 2-year follow-up. Average weight loss was 7.3 + or - 4.0%, 9.2 + or - 5.6%, 7.8 + or - 6.6%, and 3.8 + or - 7.9% at 3, 6, 12, and 24 months, respectively. Age- and sex-adjusted mixed linear models revealed that the follow-up time was significantly associated with decreases in weight (p < 0.0001), left ventricular (LV) mass (p = 0.001), and carotid intima-media thickness (p < 0.0001); there was also significant improvement in LV diastolic (p < or = 0.0001) and systolic (p = 0.001) function. Partial weight regain diminished the maximal observed beneficial effects of weight loss, however cardiovascular parameters measured at 2 years still showed a net benefit compared with baseline. CONCLUSIONS Diet-induced moderate weight loss in obese subjects is associated with beneficial changes in cardiovascular structure and function. Subsequent weight regain is associated with partial loss of these beneficial effects. (The Safety and Effectiveness of Low and High Carbohydrate Diets; NCT00079547).


Obesity | 2009

Relationship between body fat mass and free fatty acid kinetics in men and women

Bettina Mittendorfer; Faidon Magkos; Elisa Fabbrini; B. Selma Mohammed; Samuel Klein

An increased release of free fatty acids (FFAs) into plasma likely contributes to the metabolic complications associated with obesity. However, the relationship between body fat and FFA metabolism is unclear because of conflicting results from different studies. The goal of our study was to determine the inter‐relationships between body fat, sex, and plasma FFA kinetics. We determined FFA rate of appearance (Ra) in plasma, by using stable isotopically labeled tracer techniques, during basal conditions in 106 lean, overweight, and obese, nondiabetic subjects (43 men and 63 women who had 7.0–56.0% body fat). Correlation analyses demonstrated: (i) no differences between men and women in the relationship between fat mass (FM) and total FFA Ra (µmol/min); (ii) total FFA Ra increased linearly with increasing FM (r = 0.652, P < 0.001); (iii) FFA Ra per kg FM decreased in a curvilinear fashion with increasing FM (r = −0.806; P < 0.001); (iv) FFA Ra in relationship to fat‐free mass (FFM) was greater in obese than lean subjects and greater in women than in men; and (v) abdominal fat itself was not an important determinant of total FFA Ra. We conclude that total body fat, not regional fat distribution or sex, is an important modulator of the rate of FFA release into plasma. Although increased adiposity is associated with a decrease in fatty acid release in relationship to FM, this downregulation is unable to completely compensate for the increase in FM, so total FFA Ra and FFA Ra with respect to FFM are greater in women than in men and in obese than in lean subjects.


Jacc-cardiovascular Imaging | 2008

Impact of Gender on the Myocardial Metabolic Response to Obesity

Linda R. Peterson; Pablo F. Soto; Pilar Herrero; B. Selma Mohammed; Michael S. Avidan; Kenneth B. Schechtman; Carmen S. Dence; Robert J. Gropler

OBJECTIVES We sought to determine the gender-specific effects of obesity on myocardial metabolism, work, and efficiency. BACKGROUND Myocardial metabolism abnormalities may contribute to the development of obesity-related heart failure. Increased myocardial oxygen consumption (MVO(2)) and fatty acid (FA) metabolism and decreased efficiency occur with obesity in women. It is unknown whether similar changes occur with obesity in men. METHODS We quantified cardiac work, efficiency, myocardial blood flow (MBF), MVO(2), glucose, and FA metabolism with echocardiography and positron emission tomography in nonobese and obese men and women (N = 86). RESULTS There were significant differences between the obese (n = 35) and nonobese (n = 51) subjects in age, body composition, plasma lipids, and insulin resistance in addition to differences between the men (n = 30) and women (n = 56) in body composition and plasma lipids. Female gender independently predicted increased cardiac work (p < 0.001). Female gender also related to lower efficiency (p < 0.05). Obesity and female gender independently predicted greater MBF (p < 0.01, p < 0.0005, respectively) and MVO(2) (p < 0.0005, p < 0.0001). Myocardial glucose uptake was not different among the 4 subject groups, but obesity and gender interacted in predicting glucose uptake (p < 0.05). Lower myocardial glucose utilization was independently predicted by female gender (p < 0.05), and it independently predicted lower myocardial glucose utilization/plasma insulin (p < 0.05). Obesity and gender significantly interacted in the determination of glucose utilization/plasma insulin (p = 0.01). There were no differences in FA uptake among the 4 groups, and although increasing obesity correlated with greater myocardial FA utilization and oxidation; female gender (p < 0.005, p < 0.01) and plasma triglycerides (p < 0.05, p < 0.005) were their independent predictors. CONCLUSIONS Womens and mens myocardial metabolic responses to obesity are not exactly the same. Obesity and gender modulate MBF and MVO(2), are related to myocardial substrate metabolism, and sometimes interact in its prediction. Gender modifies efficiency. Gender-related differences in myocardial metabolism may affect the development of/adaptation to obesity-related cardiac disease.

Collaboration


Dive into the B. Selma Mohammed's collaboration.

Top Co-Authors

Avatar

Samuel Klein

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bettina Mittendorfer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bruce W. Patterson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Faidon Magkos

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elisa Fabbrini

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Dominic N. Reeds

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard V. Miller

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge