Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Fabbrini is active.

Publication


Featured researches published by Elisa Fabbrini.


Hepatology | 2010

Obesity and Nonalcoholic Fatty Liver Disease: Biochemical, Metabolic and Clinical Implications

Elisa Fabbrini; Shelby Sullivan; Samuel Klein

Obesity is associated with an increased risk of nonalcoholic fatty liver disease (NAFLD). Steatosis, the hallmark feature of NAFLD, occurs when the rate of hepatic fatty acid uptake from plasma and de novo fatty acid synthesis is greater than the rate of fatty acid oxidation and export (as triglyceride within very low‐density lipoprotein). Therefore, an excessive amount of intrahepatic triglyceride (IHTG) represents an imbalance between complex interactions of metabolic events. The presence of steatosis is associated with a constellation of adverse alterations in glucose, fatty acid, and lipoprotein metabolism. It is likely that abnormalities in fatty acid metabolism, in conjunction with adipose tissue, hepatic, and systemic inflammation, are key factors involved in the development of insulin resistance, dyslipidemia, and other cardiometabolic risk factors associated with NAFLD. However, it is not clear whether NAFLD causes metabolic dysfunction or whether metabolic dysfunction is responsible for IHTG accumulation, or possibly both. Understanding the precise factors involved in the pathogenesis and pathophysiology of NAFLD will provide important insights into the mechanisms responsible for the cardiometabolic complications of obesity. (HEPATOLOGY 2009.)


Proceedings of the National Academy of Sciences of the United States of America | 2009

Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity

Elisa Fabbrini; Faidon Magkos; B. Selma Mohammed; Terri Pietka; Nada A. Abumrad; Bruce W. Patterson; Adewole L. Okunade; Samuel Klein

Visceral adipose tissue (VAT) is an important risk factor for obesity-related metabolic disorders. Therefore, a reduction in VAT has become a key goal in obesity management. However, VAT is correlated with intrahepatic triglyceride (IHTG) content, so it is possible that IHTG, not VAT, is a better marker of metabolic disease. We determined the independent association of IHTG and VAT to metabolic function, by evaluating groups of obese subjects, who differed in IHTG content (high or normal) but matched on VAT volume or differed in VAT volume (high or low) but matched on IHTG content. Stable isotope tracer techniques and the euglycemic–hyperinsulinemic clamp procedure were used to assess insulin sensitivity and very-low-density lipoprotein–triglyceride (VLDL-TG) secretion rate. Tissue biopsies were obtained to evaluate cellular factors involved in ectopic triglyceride accumulation. Hepatic, adipose tissue and muscle insulin sensitivity were 41, 13, and 36% lower (P < 0.01), whereas VLDL-triglyceride secretion rate was almost double (P < 0.001), in subjects with higher than normal IHTG content, matched on VAT. No differences in insulin sensitivity or VLDL-TG secretion were observed between subjects with different VAT volumes, matched on IHTG content. Adipose tissue CD36 expression was lower (P < 0.05), whereas skeletal muscle CD36 expression was higher (P < 0.05), in subjects with higher than normal IHTG. These data demonstrate that IHTG, not VAT, is a better marker of the metabolic derangements associated with obesity. Furthermore, alterations in tissue fatty acid transport could be involved in the pathogenesis of ectopic triglyceride accumulation by redirecting plasma fatty acid uptake from adipose tissue toward other tissues.


Gastroenterology | 2008

Liver, Muscle, and Adipose Tissue Insulin Action Is Directly Related to Intrahepatic Triglyceride Content in Obese Subjects

Kevin M. Korenblat; Elisa Fabbrini; B. Selma Mohammed; Samuel Klein

BACKGROUND & AIMS Nonalcoholic fatty liver disease is associated with insulin resistance and diabetes. The purpose of this study was to determine the relationship between intrahepatic triglyceride (IHTG) content and insulin action in liver (suppression of glucose production), skeletal muscle (stimulation of glucose uptake), and adipose tissue (suppression of lipolysis) in nondiabetic obese subjects. METHODS A euglycemic-hyperinsulinemic clamp procedure and stable isotopically labeled tracer infusions were used to assess insulin action, and magnetic resonance spectroscopy was used to determine IHTG content, in 42 nondiabetic obese subjects (body mass index, 36 +/- 4 kg/m(2)) who had a wide range of IHTG content (1%-46%). RESULTS Hepatic insulin sensitivity, assessed as a function of glucose production rate and plasma insulin concentration, was inversely correlated with IHTG content (r = -0.599; P < .001). The ability of insulin to suppress fatty acid release from adipose tissue and to stimulate glucose uptake by skeletal muscle were also inversely correlated with IHTG content (adipose tissue: r = -0.590, P < .001; skeletal muscle: r = -0.656, P < .001). Multivariate linear regression analyses found that IHTG content was the best predictor of insulin action in liver, skeletal muscle, and adipose tissue, independent of body mass index and percent body fat, and accounted for 34%, 42%, and 44% of the variability in these tissues, respectively (P < .001 for each model). CONCLUSIONS These results show that progressive increases in IHTG content are associated with progressive impairment of insulin action in liver, skeletal muscle, and adipose tissue in nondiabetic obese subjects. Therefore, nonalcoholic fatty liver disease should be considered part of a multiorgan system derangement in insulin sensitivity.


Diabetes | 2009

Endoplasmic Reticulum Stress is Reduced in Tissues of Obese Subjects after Weight Loss

Margaret F. Gregor; Ling Yang; Elisa Fabbrini; B. Selma Mohammed; J. Christopher Eagon; Gökhan S. Hotamisligil; Samuel Klein

OBJECTIVE—Obesity is associated with insulin resistance and type 2 diabetes, although the mechanisms linking these pathologies remain undetermined. Recent studies in rodent models revealed endoplasmic reticulum (ER) stress in adipose and liver tissues and demonstrated that ER stress could cause insulin resistance. Therefore, we tested whether these stress pathways were also present in obese human subjects and/or regulated by weight loss. RESEARCH DESIGN AND METHODS—Eleven obese men and women (BMI 51.3 ± 3.0 kg/m2) were studied before and 1 year after gastric bypass (GBP) surgery. We examined systemic insulin sensitivity using hyperinsulinemic-euglycemic clamp studies before and after surgery and collected subcutaneous adipose and liver tissues to examine ER stress markers. RESULTS—Subjects lost 39 ± 9% body wt at 1 year after GBP surgery (P < 0.001), which was associated with a marked improvement in hepatic, skeletal muscle, and adipose tissue insulin sensitivity. Markers of ER stress in adipose tissue significantly decreased with weight loss. Specifically, glucose-regulated protein 78 (Grp78) and spliced X-box binding protein-1 (sXBP-1) mRNA levels were reduced, as were phosphorylated elongation initiation factor 2α (eIF2α) and stress kinase c-Jun NH2-terminal kinase 1 (JNK1) (all P values <0.05). Liver sections from a subset of subjects showed intense staining for Grp78 and phosphorylated eIF2α before surgery, which was reduced in post-GBP sections. CONCLUSIONS—This study presents important evidence that ER stress pathways are present in selected tissues of obese humans and that these signals are regulated by marked weight loss and metabolic improvement. Hence, this suggests the possibility of a relationship between obesity-related ER stress and metabolic dysfunction in obese humans.


Journal of Clinical Investigation | 2012

Gastric bypass and banding equally improve insulin sensitivity and β cell function

David Bradley; Caterina Conte; Bettina Mittendorfer; J. Christopher Eagon; J. Esteban Varela; Elisa Fabbrini; Amalia Gastaldelli; Kari T. Chambers; Xiong Su; Adewole L. Okunade; Bruce W. Patterson; Samuel Klein

Bariatric surgery in obese patients is a highly effective method of preventing or resolving type 2 diabetes mellitus (T2DM); however, the remission rate is not the same among different surgical procedures. We compared the effects of 20% weight loss induced by laparoscopic adjustable gastric banding (LAGB) or Roux-en-Y gastric bypass (RYGB) surgery on the metabolic response to a mixed meal, insulin sensitivity, and β cell function in nondiabetic obese adults. The metabolic response to meal ingestion was markedly different after RYGB than after LAGB surgery, manifested by rapid delivery of ingested glucose into the systemic circulation, by an increase in the dynamic insulin secretion rate, and by large, early postprandial increases in plasma glucose, insulin, and glucagon-like peptide-1 concentrations in the RYGB group. However, the improvement in oral glucose tolerance, insulin sensitivity, and overall β cell function after weight loss were not different between surgical groups. Additionally, both surgical procedures resulted in a similar decrease in adipose tissue markers of inflammation. We conclude that marked weight loss itself is primarily responsible for the therapeutic effects of RYGB and LAGB on insulin sensitivity, β cell function, and oral glucose tolerance in nondiabetic obese adults.


Gastroenterology | 2010

Surgical Removal of Omental Fat Does Not Improve Insulin Sensitivity and Cardiovascular Risk Factors in Obese Adults

Elisa Fabbrini; Robyn A. Tamboli; Faidon Magkos; Pamela A. Marks–Shulman; Aaron W. Eckhauser; William O. Richards; Samuel Klein; Naji N. Abumrad

BACKGROUND & AIMS Visceral adipose tissue (VAT) is an important risk factor for the metabolic complications associated with obesity. Therefore, a reduction in VAT is considered an important target of obesity therapy. We evaluated whether reducing VAT mass by surgical removal of the omentum improves insulin sensitivity and metabolic function in obese patients. METHODS We conducted a 12-month randomized controlled trial to determine whether reducing VAT by omentectomy in 22 obese subjects increased their improvement following Roux-en-Y gastric bypass (RYGB) surgery in hepatic and skeletal muscle sensitivity to insulin study 1. Improvement was assessed by using the hyperinsulinemic-euglycemic clamp technique. We also performed a 3-month, longitudinal, single-arm study to determine whether laparoscopic omentectomy alone, in 7 obese subjects with type 2 diabetes mellitus (T2DM), improved insulin sensitivity study 2. Improvement was assessed by using the Frequently Sampled Intravenous Glucose Tolerance Test. RESULTS The greater omentum, which weighed 0.82 kg (95% confidence interval: 0.67-0.97), was removed from subjects who had omentectomy in both studies. In study 1, there was an approximate 2-fold increase in muscle insulin sensitivity (relative increase in glucose disposal during insulin infusion) and a 4-fold increase in hepatic insulin sensitivity 12 months after RYGB alone and RYGB plus omentectomy, compared with baseline values (P<.001). There were no significant differences between groups (P>.87) or group x time interactions (P>.36). In study 2, surgery had no effect on insulin sensitivity (P=.844) or use of diabetes medications. CONCLUSIONS These results demonstrate that decreasing VAT through omentectomy, alone or in combination with RYGB surgery, does not improve metabolic function in obese patients.


Gastroenterology | 2013

Association Between Specific Adipose Tissue CD4+ T-Cell Populations and Insulin Resistance in Obese Individuals

Elisa Fabbrini; Marina Cella; Steve A. Mccartney; Anja Fuchs; Nada A. Abumrad; Terri Pietka; Zhouji Chen; Brian N. Finck; Dong Ho Han; Faidon Magkos; Caterina Conte; David Bradley; Gemma Fraterrigo; J. Christopher Eagon; Bruce W. Patterson; Marco Colonna; Samuel Klein

BACKGROUND & AIMS An increased number of macrophages in adipose tissue is associated with insulin resistance and metabolic dysfunction in obese people. However, little is known about other immune cells in adipose tissue from obese people, and whether they contribute to insulin resistance. We investigated the characteristics of T cells in adipose tissue from metabolically abnormal insulin-resistant obese (MAO) subjects, metabolically normal insulin-sensitive obese (MNO) subjects, and lean subjects. Insulin sensitivity was determined by using the hyperinsulinemic euglycemic clamp procedure. METHODS We assessed plasma cytokine concentrations and subcutaneous adipose tissue CD4(+) T-cell populations in 9 lean, 12 MNO, and 13 MAO subjects. Skeletal muscle and liver samples were collected from 19 additional obese patients undergoing bariatric surgery to determine the presence of selected cytokine receptors. RESULTS Adipose tissue from MAO subjects had 3- to 10-fold increases in numbers of CD4(+) T cells that produce interleukin (IL)-22 and IL-17 (a T-helper [Th] 17 and Th22 phenotype) compared with MNO and lean subjects. MAO subjects also had increased plasma concentrations of IL-22 and IL-6. Receptors for IL-17 and IL-22 were expressed in human liver and skeletal muscle samples. IL-17 and IL-22 inhibited uptake of glucose in skeletal muscle isolated from rats and reduced insulin sensitivity in cultured human hepatocytes. CONCLUSIONS Adipose tissue from MAO individuals contains increased numbers of Th17 and Th22 cells, which produce cytokines that cause metabolic dysfunction in liver and muscle in vitro. Additional studies are needed to determine whether these alterations in adipose tissue T cells contribute to the pathogenesis of insulin resistance in obese people.


Gastroenterology | 2010

Dissociation Between Intrahepatic Triglyceride Content and Insulin Resistance in Familial Hypobetalipoproteinemia

Anastassia Amaro; Elisa Fabbrini; Marleen Kars; Pin Yue; Kenneth B. Schechtman; Gustav Schonfeld; Samuel Klein

BACKGROUND & AIMS Hepatic steatosis is associated with insulin resistance, but it is not clear whether increased intrahepatic triglyceride (IHTG) content causes the resistance or is a marker. Subjects with familial hypobetalipoproteinemia (FHBL) have high levels of IHTG because of a genetic defect in hepatic export of triglycerides, and provide a unique cohort to study the relationship between steatosis and insulin sensitivity. METHODS One group of lean subjects with normal IHTG content (2.2% +/- 0.6% of liver volume) (n = 6), and 3 groups of overweight and obese subjects matched for body mass index, were studied: (1) normal IHTG content (3.3% +/- 0.5%; n = 6), (2) high IHTG content (21.4% +/- 2.6%) due to nonalcoholic fatty liver disease (NAFLD; n = 6), and (3) high IHTG content (18.1% +/- 2.2%) due to FHBL (n = 3). A hyperinsulinemic-euglycemic clamp procedure, in conjunction with glucose tracer infusion, was used to determine multiorgan insulin sensitivity. RESULTS Hepatic insulin sensitivity (reciprocal of glucose rate of appearance [micromol x kg fat-free mass(-1) x min(-1)] x insulin [mU/L]) was greatest in the Lean group (2.0 +/- 0.4); it was the same among subjects with FHBL (0.8 +/- 0.1) and the group with normal IHTG content, matched for body mass index (0.7 +/- 0.1), but greater than the NAFLD group (0.3 +/- 0.1) (P < .01). Muscle insulin sensitivity (percent increase in glucose uptake during insulin infusion) was greatest in the Lean group (576% +/- 70%). Muscle insulin sensitivity was similar in subjects with FHBL and those with normal IHTG (319% +/- 77%, 326% +/- 27%, respectively), but greater than the NAFLD group (145% +/- 18%) (P < .01). CONCLUSIONS Steatosis is dissociated from insulin resistance in FHBL, which suggests that increased IHTG content is a marker, not a cause, of metabolic dysfunction.


The Journal of Clinical Endocrinology and Metabolism | 2010

Effect of Fenofibrate and Niacin on Intrahepatic Triglyceride Content, Very Low-Density Lipoprotein Kinetics, and Insulin Action in Obese Subjects with Nonalcoholic Fatty Liver Disease

Elisa Fabbrini; B. Selma Mohammed; Kevin M. Korenblat; Faidon Magkos; Jennifer McCrea; Bruce W. Patterson; Samuel Klein

CONTEXT Nonalcoholic fatty liver disease is associated with risk factors for cardiovascular disease, particularly increased plasma triglyceride (TG) concentrations and insulin resistance. Fenofibrate and extended release nicotinic acid (Niaspan) are used to treat hypertriglyceridemia and can affect fatty acid oxidation and plasma free fatty acid concentrations, which influence intrahepatic triglyceride (IHTG) content and metabolic function. OBJECTIVE The objective of the study was to determine the effects of fenofibrate and nicotinic acid therapy on IHTG content and cardiovascular risk factors. EXPERIMENTAL DESIGN AND MAIN OUTCOME MEASURES: We conducted a randomized, controlled trial to determine the effects of fenofibrate (8 wk, 200 mg/d), Niaspan (16 wk, 2000 mg/d), or placebo (8 wk) on IHTG content, very low-density lipoprotein (VLDL) kinetics, and insulin sensitivity. SETTING AND PARTICIPANTS Twenty-seven obese subjects with nonalcoholic fatty liver disease (body mass index 36 +/- 1 kg/m(2), IHTG 23 +/- 2%) were studied at Washington University. RESULTS Neither fenofibrate nor Niaspan affected IHTG content, but both decreased plasma TG, VLDL-TG, and VLDL-apolipoprotein B concentrations (P < 0.05). Fenofibrate increased VLDL-TG clearance from plasma (33 to 54 ml/min; P < 0.05) but not VLDL-TG secretion. Niaspan decreased VLDL-TG secretion (27 to 15 micromol/min; P < 0.05) without affecting clearance. Both fenofibrate and Niaspan decreased VLDL-apolipoprotein B secretion (1.6 to 1.2 and 1.3 to 0.9 nmol/min, respectively; P < 0.05). Niaspan reduced hepatic, adipose tissue, and muscle insulin sensitivity (P < 0.05), whereas fenofibrate had no effect on insulin action. CONCLUSIONS Fenofibrate and Niaspan decrease plasma VLDL-TG concentration without altering IHTG content. However, the mechanism responsible for the change in VLDL-TG concentration is different for each drug; fenofibrate increases plasma VLDL-TG clearance, whereas nicotinic acid decreases VLDL-TG secretion.


Gastroenterology | 2012

Intrahepatic Diacylglycerol Content Is Associated With Hepatic Insulin Resistance in Obese Subjects

Faidon Magkos; Xiong Su; David Bradley; Elisa Fabbrini; Caterina Conte; J. Christopher Eagon; J. Esteban Varela; Elizabeth M. Brunt; Bruce W. Patterson; Samuel Klein

Data from studies in animal models indicate that certain lipid metabolites, particularly diacylglycerol, ceramide, and acylcarnitine, disrupt insulin action. We evaluated the relationship between the presence of these metabolites in the liver (assessed by mass spectrometry) and hepatic insulin sensitivity (assessed using a hyperinsulinemic-euglycemic clamp with stable isotope tracer infusion) in 16 obese adults (body mass index, 48 ± 9 kg/m²). There was a negative correlation between insulin-mediated suppression of hepatic glucose production and intrahepatic diacylglycerol (r = -0.609; P = .012), but not with intrahepatic ceramide or acylcarnitine. These data indicate that intrahepatic diacylglycerol is an important mediator of hepatic insulin resistance in obese people with nonalcoholic fatty liver disease.

Collaboration


Dive into the Elisa Fabbrini's collaboration.

Top Co-Authors

Avatar

Samuel Klein

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bruce W. Patterson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Selma Mohammed

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bettina Mittendorfer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Adewole L. Okunade

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Caterina Conte

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

J. Christopher Eagon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kevin M. Korenblat

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gemma Fraterrigo

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge