Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Timothy Baxter is active.

Publication


Featured researches published by B. Timothy Baxter.


Journal of Clinical Investigation | 2002

Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms

G. Matthew Longo; Wanfen Xiong; Timothy C. Greiner; Yong Zhao; Nicola Fiotti; B. Timothy Baxter

Matrix metalloproteinases (MMPs) 9 and 2 are increased in human abdominal aortic aneurysm (AAA) tissue, but their precise role and potential interaction remain unclear. Experimental induction of aortic aneurysms in mice genetically deficient in these peptidases could provide new insight into AAA pathogenesis. Mice deficient in the expression of MMP-9 (MMP-9KO) or MMP-2 (MMP-2KO) and their corresponding wild-type background mice (WT) underwent AAA induction by abluminal application of calcium chloride (CaCl(2)). No aneurysm formation was observed at 10 weeks after treatment in either the MMP-9KO or the MMP-2KO mice, whereas the corresponding WT mice showed an average 74% and 52% increase in aortic diameter, respectively. Reinfusion of competent macrophages from the corresponding WT strains into knockout mice resulted in reconstitution of AAA in MMP-9KO but not MMP-2KO mice. These findings suggest that macrophage-derived MMP-9 and mesenchymal cell MMP-2 are both required and work in concert to produce AAA.


Journal of Clinical Investigation | 2007

Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice

Jiusong Sun; Galina K. Sukhova; Min Yang; Paul J. Wolters; Lindsey MacFarlane; Peter Libby; Chongxiu Sun; Yadong Zhang; Jianming Liu; Terri L. Ennis; Rebecca Knispel; Wanfen Xiong; Robert W. Thompson; B. Timothy Baxter; Guo-Ping Shi

Abdominal aortic aneurysm (AAA), an inflammatory disease, involves leukocyte recruitment, immune responses, inflammatory cytokine production, vascular remodeling, neovascularization, and vascular cell apoptosis, all of which contribute to aortic dilatation. This study demonstrates that mast cells, key participants in human allergic immunity, participate in AAA pathogenesis in mice. Mast cells were found to accumulate in murine AAA lesions. Mast cell-deficient KitW-sh/KitW-sh mice failed to develop AAA elicited by elastase perfusion or periaortic chemical injury. KitW-sh/KitW-sh mice had reduced aortic expansion and internal elastic lamina degradation; decreased numbers of macrophages, CD3+ T lymphocytes, SMCs, apoptotic cells, and CD31+ microvessels; and decreased levels of aortic tissue IL-6 and IFN-gamma. Activation of mast cells in WT mice via C48/80 injection resulted in enhanced AAA growth while mast cell stabilization with disodium cromoglycate diminished AAA formation. Mechanistic studies demonstrated that mast cells participated in angiogenesis, aortic SMC apoptosis, and matrix-degrading protease expression. Reconstitution of KitW-sh/KitW-sh mice with bone marrow-derived mast cells from WT or TNF-alpha-/- mice, but not from IL-6-/- or IFN-gamma-/- mice, caused susceptibility to AAA formation to be regained. These results demonstrate that mast cells participate in AAA pathogenesis in mice by releasing proinflammatory cytokines IL-6 and IFN-gamma, which may induce aortic SMC apoptosis, matrix-degrading protease expression, and vascular wall remodeling, important hallmarks of arterial aneurysms.


Annals of the New York Academy of Sciences | 1999

MMP Inhibition in Abdominal Aortic Aneurysms: Rationale for a Prospective Randomized Clinical Trial

Robert W. Thompson; B. Timothy Baxter

ABSTRACT: Abdominal aortic aneurysms (AAAs) represent a chronic degenerative condition associated with a life‐threatening risk of rupture. The evolution of AAAs is thought to involve the progressive degradation of aortic wall elastin and collagen, and increased local production of several matrix metalloproteinases (MMPs) has been implicated in this process. We have previously shown that tetracycline derivatives and other MMP inhibitors suppress aneurysm development in experimental animal models of AAA. Doxycycline also reduces the expression of MMP‐2 and MMP‐9 by human vascular wall cell types and by AAA tissue explants in vitro. To determine whether this strategy might have a role in the clinical management of small AAA, we examined the effect of doxycycline on aortic wall MMP expression in vivo. Patients were treated with doxycycline (100 mg p.o. bid) for 7 days prior to elective AAA repair, and aneurysm tissues were obtained at the time of surgery (n= 5). Tissues obtained from an equal number of untreated patients with AAA were used for comparison. By reverse transcription‐polymerase chain reaction and Southern blot analysis, MMP‐2 and MMP‐9 were both found to be abundantly expressed in the aneurysm wall. Preoperative treatment with doxycycline was associated with a 3‐fold reduction in aortic wall expression of MMP‐2 and a 4‐fold reduction in MMP‐9 (p < 0.05 compared to untreated AAA). These preliminary results suggest that even short‐term treatment with doxycycline can suppress MMP expression within human AAA tissues. Given its pleiotropic effects as an MMP inhibitor, doxycycline may be particularly effective in suppressing aortic wall connective tissue degradation. While it remains to be determined whether MMP inhibition will have a clinically significant impact on aneurysm expansion, it is expected that this question can be resolved by a properly designed prospective randomized clinical trial.


Journal of Immunology | 2004

Key Roles of CD4+ T Cells and IFN-γ in the Development of Abdominal Aortic Aneurysms in a Murine Model

Wanfen Xiong; Yong Zhao; Amy Prall; Timothy C. Greiner; B. Timothy Baxter

Abdominal aortic aneurysm (AAA) is one of a number of diseases associated with a prominent inflammatory cell infiltrate and local destruction of structural matrix macromolecules. This inflammatory infiltrate is predominately composed of T lymphocytes and macrophages. Delineating specific contribution of these inflammatory cells and their cytokines in AAA formation is the key to understanding AAA and other chronic inflammatory disease processes. Our previous studies have demonstrated that macrophages are the major source of matrix metalloproteinase-9, which is required for aneurysmal degeneration in the murine AAA model. However, the role of CD4+ T cells, the most abundant infiltrates in aneurysmal aortic tissue, is uncertain. In the present study, we found that in the absence of CD4+ T cells, mice are resistant to aneurysm induction. Previous studies have shown that IFN-γ levels are increased in AAA. IFN-γ is a main product of T cells. Intraperitoneal IFN-γ was able to partially reconstitute aneurysms in CD4−/− mice. Furthermore, mice with a targeted deletion of IFN-γ have attenuation of MMP expression and inhibition of aneurysm development. Aneurysms in IFN-γ−/− mice can be reconstituted by reinfusion of competent splenocytes from the corresponding wild-type mice. This study demonstrates the pivotal role that T cells and the T cell cytokine, IFN-γ, play in orchestrating matrix remodeling in AAA. This study has important implications for other degenerative diseases associated with matrix destruction.


Journal of Vascular Surgery | 2008

Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome

Wanfen Xiong; Rebecca Knispel; Harry C. Dietz; Francesco Ramirez; B. Timothy Baxter

OBJECTIVES Thoracic aneurysms are the main cardiovascular complication of Marfan syndrome (MFS) resulting in premature death. MFS has been associated with mutations of the gene encoding fibrillin-1 (FBN1), a major constituent of the elastic fibers. Matrix metalloproteinases (MMPs) are important in the pathogenesis of abdominal aortic aneurysms but their precise role in MFS is not clear. Doxycycline is a nonspecific MMP inhibitor. The objective of the study was to determine whether docycycline can attenuate matrix degradation and prolong the survival of mice with MFS. METHODS The study employed a well-characterized animal model of MFS, namely fibrillin-1 under-expressing mice (mgR/mgR mice) that die spontaneously from rupture of the thoracic aorta between 2 to 4 months of age. Mutant and wild type mice were given doxycycline in their drinking water at a concentration designed to provide 100 mg/kg/day beginning at postnatal day (PD) 1, whereas control mice were given water. Treated mice were divided into two groups. One group of animals was followed until death or for 7 months to determine lifespan. In the second group of mice, the ascending thoracic aortas were collected for histological analysis (H&E staining, trichrome staining) and zymography for examining MMP-2 and MMP-9 levels at 6 weeks. RESULTS MMP-2 and MMP-9 levels were higher in the thoracic aorta of mgR/mgR mice compared with wild type littermates. Doxycycline-treated mgR/mgR mice lived 132 +/- 14.6 days (n = 16) or significantly longer than untreated mutant mice (79 +/- 6.7 days, n = 30) (P < 0.01). Connective tissue staining showed that doxycycline treatment decreased elastic fiber degradation in mgR/mgR mice. Furthermore, mgR/mgR mice treated with doxycycline had lower MMP-2 and MMP-9 levels compared with untreated mgR/mgR mice. CONCLUSIONS This study demonstrates that doxycycline significantly delays aneurysm rupture in MFS-like mice by inhibiting expression of tissue MMP-2 and MMP-9 and thus, degradation of the elastic matrix. The results suggest that MMPs contribute to the progression of thoracic aneurysm in MFS and that doxycycline has the potential to significantly alter the course of the disease.


Journal of Immunology | 2009

Blocking TNF-α Attenuates Aneurysm Formation in a Murine Model

Wanfen Xiong; Jason N. MacTaggart; Rebecca Knispel; Jennifer M. Worth; Yuri Persidsky; B. Timothy Baxter

Abdominal aortic aneurysm (AAA) is one of a number of diseases associated with a prominent inflammatory cell infiltrate and local destruction of structural matrix macromolecules. This chronic infiltrate is predominately composed of macrophages and T lymphocytes. Activated macrophages produce a variety of cytokines, including TNF-α. Elevated levels of TNF-α were observed in patients with AAA, suggesting that TNF-α may play a role in the pathogenic mechanisms of AAA. In the present study, we investigated the role of TNF-α in AAA formation. By studying a murine aneurysm model, we found that both mRNA and protein levels of TNF-α were increased in aneurysm tissue compared with normal aortic tissues. Therefore, we tested the response of mice lacking expression of TNF-α. These mice were resistant to aneurysm formation. Our results show that TNF-α deficiency attenuates matrix metalloproteinase (MMP) 2 and MMP-9 expression and macrophage infiltration into the aortic tissue. These data suggest that TNF-α plays a central role in regulating matrix remodeling and inflammation in the aortic wall leading to AAA. In addition, we investigated the pharmacological inhibition of AAA. A Food and Drug Administration-approved TNF-α antagonist, infliximab, inhibited aneurysm growth. Our data also show that infliximab treatment attenuated elastic fiber disruption, macrophage infiltration, and MMP-2 and MMP-9 expression in aortic tissue. This study confirms that a strategy of TNF-α antagonism may be an important therapeutic strategy for treating AAA.


Journal of Vascular Surgery | 1994

Abdominal aortic aneurysms are associated with altered matrix proteins of the nonaneurysmal aortic segments

B. Timothy Baxter; Valerie A. Davis; David J. Minion; Yi Ping Wang; Thomas G. Lynch; Bruce M. McManus

PURPOSE Abdominal aortic aneurysms (AAA) are associated with diffuse arteriomegaly and peripheral aneurysms, suggesting a generalized process. Elastin and collagen are the key structural proteins of the aorta, and their relative content is markedly altered in tissue from AAA. Our purpose was to investigate elastin and collagen content in the proximal, nonaneurysmal segments of aortas with infrarenal AAA. METHODS After extraction of lipid, calcium, and soluble proteins, hydroxyproline (collagen) and desmosine-isodesmosine (elastin) contents were determined by high-performance liquid chromatography in the ascending and descending thoracic, supraceliac, and suprarenal aorta. By repeated measures of analysis of covariance, collagen was found to be increased throughout the aorta in AAA as compared with normal aorta or aorta with atherosclerotic occlusive disease. This difference remained significant when adjustments were made for group differences in age and degree of atherosclerosis. This increase in collagen content results in a dilutional decrease in elastin concentration. These data demonstrate that the same matrix protein alterations found in AAA tissue occur throughout the aorta, differing only in magnitude in the aneurysmal and nonaneurysmal segments. These data suggest that aneurysm formation may related to alterations in the regulation of elastin and collagen.


Journal of Vascular Surgery | 2003

Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells

Jian Liu; Wanfen Xiong; Lisa Baca-Regen; Hideaki Nagase; B. Timothy Baxter

Degradation of the extracellular matrix components elastin and collagen has been implicated in vascular diseases, including abdominal aortic aneurysm (AAA) and atherosclerotic plaque rupture. Increased expression of matrix metalloproteinases (MMPs) is involved in these disease processes. Our previous studies have demonstrated that MMP-2 derived from mesenchymal cells is required for aneurysm development in a murine model. Doxycycline is a nonspecific inhibitor of MMPs. In the present study, the mechanisms of the inhibitory effects of doxycycline on MMP-2 expression from cultured human aortic smooth muscle cells (SMCs) and human aortic aneurysm tissue explants were studied. Doxycycline inhibited MMP-2 expression from cultured SMCs in a concentration-dependent manner (5-40 microg/mL; inhibitory concentration of 50%, 6.5 microg/mL). At normal therapeutic serum concentration (5 microg/mL) doxycycline significantly reduced MMP-2 production from SMCs (37%; P <.05), which were stimulated with conditioned media from macrophage or lymphocyte co-culture simulating the inflammatory milieu of AAA tissue. This correlated with a decrease in MMP-2 mRNA half-life, from 49 hours to 28 hours, which suggests that doxycycline inhibits SMC MMP-2 production in part by reducing MMP-2 mRNA stability. When AAA tissue was cultured for 10 days with doxycycline at concentrations of 2.5 to 40 microg/mL, the media exhibited a concentration-dependent decrease in both active and latent forms of MMP-2 and MMP-9. Doxycycline at a concentration of 5 microg/mL reduced active and latent MMP-2 secreted from cultured AAA tissue by 50% and 30%, respectively (P <.05). These study findings demonstrate that doxycycline at standard therapeutic serum concentrations inhibits MMP-2 expression from cultured human aortic SMCs and AAA tissue explants. Inasmuch as MMP activity contributes to extracellular matrix degradation in AAAs and atherosclerotic plaque, doxycycline may have potential value in treating these diseases.


Atherosclerosis | 1998

Association of malondialdehyde-acetaldehyde (MAA) adducted proteins with atherosclerotic-induced vascular inflammatory injury

Gary E. Hill; Jacqueline A. Miller; B. Timothy Baxter; Lynell W. Klassen; Michael J. Duryee; Dean J. Tuma; Geoffrey M. Thiele

Atherosclerosis is a vascular injury characterized by elevated tissue levels of tumor necrosis factor-alpha (TNF-alpha), increased expression of endothelial cell adhesion molecules, and vascular wall inflammatory cell infiltration. Foam cells are associated with atherosclerotic plaque material, and low density lipoprotein (LDL) is a lipid component of foam cells. Malondialdehyde (MDA) is an oxidative product of unsaturated fatty acids and is also present in atherosclerotic lesions. MDA-modified (adducted) proteins, including MDA-modified LDL, are present in atherosclerotic human vascular tissue. Acetaldehyde (AA) is the major metabolic product of ethanol oxidation. Both MDA and AA are highly reactive aldehydes and will combine with proteins to produce an antigenically distinct protein adduct, termed the MAA adduct. This study demonstrates that proteins modified in the presence of high concentrations of MDA can produce MAA-modified proteins in vitro. In addition, MAA adducted proteins are capable of inducing rat heart endothelial cell cultures (rHEC) to produce and release TNF-alpha, and cause rHEC upregulation of endothelial adhesion molecule expression, including ICAM-1. These adhesion molecules are required for circulating inflammatory cells to adhere to endothelium which allows inflammatory cell tissue infiltration. Additionally, MAA modified proteins were defected in human atherosclerotic aortic vascular tissue but not in normal aortic tissue. Since atherosclerosis is associated with an inflammatory vascular injury characterized by elevated tissue TNF-alpha concentrations and inflammatory cell infiltration, these data suggest that MAA-adducted proteins may be formed in atherosclerotic plaque material and may be involved in the inflammatory reaction that occurs in atherosclerosis. These data further suggest that previous studies demonstrating MDA modified protein in atherosclerotic plaque may in fact have MAA modified proteins associated with them.


Atherosclerosis | 2009

Inhibition of reactive oxygen species attenuates aneurysm formation in a murine model

Wanfen Xiong; Jason N. MacTaggart; Rebecca Knispel; Jennifer M. Worth; Zhen Zhu; Yulong Li; Yimin Sun; B. Timothy Baxter; Jason M. Johanning

Reactive oxygen species (ROS) are increased in human abdominal aortic aneurysms (AAA). NADPH oxidases are the predominant source of superoxide anion (O(2)(-)) in the vasculature. Inducible nitric oxide synthase (iNOS) produces a significant amount of nitric oxide (NO) during inflammatory processes. We hypothesized that ROS produced by NADPH oxidases and iNOS played an important role in aneurysm formation. We examined this hypothesis using selective blockade of NADPH oxidases and iNOS in a murine model of AAA. Mice, including C57BL/6, iNOS knockout (iNOS(-/-)) mice, and its background matched control (C57BL/6), underwent AAA induction by periaortic application of CaCl(2). Aortic diameter was measured at aneurysm induction and harvest. Beginning 1 week prior to aneurysm induction and continuing to aortic harvest 6 weeks later, one group of the C57BL/6 mice were treated with orally administered apocynin (NADPH oxidase inhibitor). Control mice were given water. The mean diameter and change in diameter of each group were compared with concurrent controls. Aortic levels of the NO metabolite, NO(x) (NO(2) and NO(3)), were significantly increased in CaCl(2)-treated wild type mice. INOS(-/-) mice were partly resistant to aneurysm induction. This was associated with reduced expression of matrix metalloproteinase (MMP)-2 and MMP-9 and decreased production of NO(x) in the aortic tissues. Inhibition of NADPH oxidase by apocynin also blocked aneurysm formation. In conclusion, both iNOS deficiency and NADPH oxidase inhibition suppressed aneurysm formation in association with decreased NO(x) levels. These studies suggest that both NADPH oxidase and iNOS pathways contribute to ROS production and AAA development.

Collaboration


Dive into the B. Timothy Baxter's collaboration.

Top Co-Authors

Avatar

Wanfen Xiong

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Iraklis I. Pipinos

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jason N. MacTaggart

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thomas G. Lynch

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Matthew A. Dale

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rebecca Knispel

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jason M. Johanning

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Carson

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brian G. Halloran

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

G. Matthew Longo

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge