Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wanfen Xiong is active.

Publication


Featured researches published by Wanfen Xiong.


Journal of Clinical Investigation | 2002

Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms

G. Matthew Longo; Wanfen Xiong; Timothy C. Greiner; Yong Zhao; Nicola Fiotti; B. Timothy Baxter

Matrix metalloproteinases (MMPs) 9 and 2 are increased in human abdominal aortic aneurysm (AAA) tissue, but their precise role and potential interaction remain unclear. Experimental induction of aortic aneurysms in mice genetically deficient in these peptidases could provide new insight into AAA pathogenesis. Mice deficient in the expression of MMP-9 (MMP-9KO) or MMP-2 (MMP-2KO) and their corresponding wild-type background mice (WT) underwent AAA induction by abluminal application of calcium chloride (CaCl(2)). No aneurysm formation was observed at 10 weeks after treatment in either the MMP-9KO or the MMP-2KO mice, whereas the corresponding WT mice showed an average 74% and 52% increase in aortic diameter, respectively. Reinfusion of competent macrophages from the corresponding WT strains into knockout mice resulted in reconstitution of AAA in MMP-9KO but not MMP-2KO mice. These findings suggest that macrophage-derived MMP-9 and mesenchymal cell MMP-2 are both required and work in concert to produce AAA.


Circulation | 2004

Elastin degradation and calcification in an abdominal aorta injury model: Role of matrix metalloproteinases

Dina M. Basalyga; Dan T. Simionescu; Wanfen Xiong; B. Timothy Baxter; Barry Starcher; Narendra R. Vyavahare

Background—Elastin calcification is a widespread feature of vascular pathology, and circumstantial evidence exists for a correlation between elastin degradation and calcification. We hypothesized that matrix metalloproteinase (MMP)–mediated vascular remodeling plays a significant role in elastin calcification. Methods and Results—In the present studies, we determined that short-term periadventitial treatment of the rat abdominal aorta with low concentrations of calcium chloride (CaCl2) induced chronic degeneration and calcification of vascular elastic fibers in the absence of aneurysm formation and inflammatory reactions. Furthermore, the rate of progression of calcification depended on the application method and concentration of CaCl2 applied periarterially. Initial calcium deposits, associated mainly with elastic fibers, were persistently accompanied by elastin degradation, disorganization of aortic extracellular matrix, and moderate levels of vascular cell apoptosis. Application of aluminum ions (known inhibitors of elastin degradation) before the CaCl2-mediated injury significantly reduced elastin calcification and abolished both extracellular matrix degradation and apoptosis. We also found that MMP-knockout mice were resistant to CaCl2-mediated aortic injury and did not develop elastin degeneration and calcification. Conclusion—Collectively, these data strongly indicate a correlation between MMP-mediated elastin degradation and vascular calcification.


Journal of Clinical Investigation | 2007

Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice

Jiusong Sun; Galina K. Sukhova; Min Yang; Paul J. Wolters; Lindsey MacFarlane; Peter Libby; Chongxiu Sun; Yadong Zhang; Jianming Liu; Terri L. Ennis; Rebecca Knispel; Wanfen Xiong; Robert W. Thompson; B. Timothy Baxter; Guo-Ping Shi

Abdominal aortic aneurysm (AAA), an inflammatory disease, involves leukocyte recruitment, immune responses, inflammatory cytokine production, vascular remodeling, neovascularization, and vascular cell apoptosis, all of which contribute to aortic dilatation. This study demonstrates that mast cells, key participants in human allergic immunity, participate in AAA pathogenesis in mice. Mast cells were found to accumulate in murine AAA lesions. Mast cell-deficient KitW-sh/KitW-sh mice failed to develop AAA elicited by elastase perfusion or periaortic chemical injury. KitW-sh/KitW-sh mice had reduced aortic expansion and internal elastic lamina degradation; decreased numbers of macrophages, CD3+ T lymphocytes, SMCs, apoptotic cells, and CD31+ microvessels; and decreased levels of aortic tissue IL-6 and IFN-gamma. Activation of mast cells in WT mice via C48/80 injection resulted in enhanced AAA growth while mast cell stabilization with disodium cromoglycate diminished AAA formation. Mechanistic studies demonstrated that mast cells participated in angiogenesis, aortic SMC apoptosis, and matrix-degrading protease expression. Reconstitution of KitW-sh/KitW-sh mice with bone marrow-derived mast cells from WT or TNF-alpha-/- mice, but not from IL-6-/- or IFN-gamma-/- mice, caused susceptibility to AAA formation to be regained. These results demonstrate that mast cells participate in AAA pathogenesis in mice by releasing proinflammatory cytokines IL-6 and IFN-gamma, which may induce aortic SMC apoptosis, matrix-degrading protease expression, and vascular wall remodeling, important hallmarks of arterial aneurysms.


Journal of Immunology | 2004

Key Roles of CD4+ T Cells and IFN-γ in the Development of Abdominal Aortic Aneurysms in a Murine Model

Wanfen Xiong; Yong Zhao; Amy Prall; Timothy C. Greiner; B. Timothy Baxter

Abdominal aortic aneurysm (AAA) is one of a number of diseases associated with a prominent inflammatory cell infiltrate and local destruction of structural matrix macromolecules. This inflammatory infiltrate is predominately composed of T lymphocytes and macrophages. Delineating specific contribution of these inflammatory cells and their cytokines in AAA formation is the key to understanding AAA and other chronic inflammatory disease processes. Our previous studies have demonstrated that macrophages are the major source of matrix metalloproteinase-9, which is required for aneurysmal degeneration in the murine AAA model. However, the role of CD4+ T cells, the most abundant infiltrates in aneurysmal aortic tissue, is uncertain. In the present study, we found that in the absence of CD4+ T cells, mice are resistant to aneurysm induction. Previous studies have shown that IFN-γ levels are increased in AAA. IFN-γ is a main product of T cells. Intraperitoneal IFN-γ was able to partially reconstitute aneurysms in CD4−/− mice. Furthermore, mice with a targeted deletion of IFN-γ have attenuation of MMP expression and inhibition of aneurysm development. Aneurysms in IFN-γ−/− mice can be reconstituted by reinfusion of competent splenocytes from the corresponding wild-type mice. This study demonstrates the pivotal role that T cells and the T cell cytokine, IFN-γ, play in orchestrating matrix remodeling in AAA. This study has important implications for other degenerative diseases associated with matrix destruction.


Journal of Vascular Surgery | 2008

Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome

Wanfen Xiong; Rebecca Knispel; Harry C. Dietz; Francesco Ramirez; B. Timothy Baxter

OBJECTIVES Thoracic aneurysms are the main cardiovascular complication of Marfan syndrome (MFS) resulting in premature death. MFS has been associated with mutations of the gene encoding fibrillin-1 (FBN1), a major constituent of the elastic fibers. Matrix metalloproteinases (MMPs) are important in the pathogenesis of abdominal aortic aneurysms but their precise role in MFS is not clear. Doxycycline is a nonspecific MMP inhibitor. The objective of the study was to determine whether docycycline can attenuate matrix degradation and prolong the survival of mice with MFS. METHODS The study employed a well-characterized animal model of MFS, namely fibrillin-1 under-expressing mice (mgR/mgR mice) that die spontaneously from rupture of the thoracic aorta between 2 to 4 months of age. Mutant and wild type mice were given doxycycline in their drinking water at a concentration designed to provide 100 mg/kg/day beginning at postnatal day (PD) 1, whereas control mice were given water. Treated mice were divided into two groups. One group of animals was followed until death or for 7 months to determine lifespan. In the second group of mice, the ascending thoracic aortas were collected for histological analysis (H&E staining, trichrome staining) and zymography for examining MMP-2 and MMP-9 levels at 6 weeks. RESULTS MMP-2 and MMP-9 levels were higher in the thoracic aorta of mgR/mgR mice compared with wild type littermates. Doxycycline-treated mgR/mgR mice lived 132 +/- 14.6 days (n = 16) or significantly longer than untreated mutant mice (79 +/- 6.7 days, n = 30) (P < 0.01). Connective tissue staining showed that doxycycline treatment decreased elastic fiber degradation in mgR/mgR mice. Furthermore, mgR/mgR mice treated with doxycycline had lower MMP-2 and MMP-9 levels compared with untreated mgR/mgR mice. CONCLUSIONS This study demonstrates that doxycycline significantly delays aneurysm rupture in MFS-like mice by inhibiting expression of tissue MMP-2 and MMP-9 and thus, degradation of the elastic matrix. The results suggest that MMPs contribute to the progression of thoracic aneurysm in MFS and that doxycycline has the potential to significantly alter the course of the disease.


Journal of Immunology | 2009

Blocking TNF-α Attenuates Aneurysm Formation in a Murine Model

Wanfen Xiong; Jason N. MacTaggart; Rebecca Knispel; Jennifer M. Worth; Yuri Persidsky; B. Timothy Baxter

Abdominal aortic aneurysm (AAA) is one of a number of diseases associated with a prominent inflammatory cell infiltrate and local destruction of structural matrix macromolecules. This chronic infiltrate is predominately composed of macrophages and T lymphocytes. Activated macrophages produce a variety of cytokines, including TNF-α. Elevated levels of TNF-α were observed in patients with AAA, suggesting that TNF-α may play a role in the pathogenic mechanisms of AAA. In the present study, we investigated the role of TNF-α in AAA formation. By studying a murine aneurysm model, we found that both mRNA and protein levels of TNF-α were increased in aneurysm tissue compared with normal aortic tissues. Therefore, we tested the response of mice lacking expression of TNF-α. These mice were resistant to aneurysm formation. Our results show that TNF-α deficiency attenuates matrix metalloproteinase (MMP) 2 and MMP-9 expression and macrophage infiltration into the aortic tissue. These data suggest that TNF-α plays a central role in regulating matrix remodeling and inflammation in the aortic wall leading to AAA. In addition, we investigated the pharmacological inhibition of AAA. A Food and Drug Administration-approved TNF-α antagonist, infliximab, inhibited aneurysm growth. Our data also show that infliximab treatment attenuated elastic fiber disruption, macrophage infiltration, and MMP-2 and MMP-9 expression in aortic tissue. This study confirms that a strategy of TNF-α antagonism may be an important therapeutic strategy for treating AAA.


Journal of Vascular Surgery | 2003

Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells

Jian Liu; Wanfen Xiong; Lisa Baca-Regen; Hideaki Nagase; B. Timothy Baxter

Degradation of the extracellular matrix components elastin and collagen has been implicated in vascular diseases, including abdominal aortic aneurysm (AAA) and atherosclerotic plaque rupture. Increased expression of matrix metalloproteinases (MMPs) is involved in these disease processes. Our previous studies have demonstrated that MMP-2 derived from mesenchymal cells is required for aneurysm development in a murine model. Doxycycline is a nonspecific inhibitor of MMPs. In the present study, the mechanisms of the inhibitory effects of doxycycline on MMP-2 expression from cultured human aortic smooth muscle cells (SMCs) and human aortic aneurysm tissue explants were studied. Doxycycline inhibited MMP-2 expression from cultured SMCs in a concentration-dependent manner (5-40 microg/mL; inhibitory concentration of 50%, 6.5 microg/mL). At normal therapeutic serum concentration (5 microg/mL) doxycycline significantly reduced MMP-2 production from SMCs (37%; P <.05), which were stimulated with conditioned media from macrophage or lymphocyte co-culture simulating the inflammatory milieu of AAA tissue. This correlated with a decrease in MMP-2 mRNA half-life, from 49 hours to 28 hours, which suggests that doxycycline inhibits SMC MMP-2 production in part by reducing MMP-2 mRNA stability. When AAA tissue was cultured for 10 days with doxycycline at concentrations of 2.5 to 40 microg/mL, the media exhibited a concentration-dependent decrease in both active and latent forms of MMP-2 and MMP-9. Doxycycline at a concentration of 5 microg/mL reduced active and latent MMP-2 secreted from cultured AAA tissue by 50% and 30%, respectively (P <.05). These study findings demonstrate that doxycycline at standard therapeutic serum concentrations inhibits MMP-2 expression from cultured human aortic SMCs and AAA tissue explants. Inasmuch as MMP activity contributes to extracellular matrix degradation in AAAs and atherosclerotic plaque, doxycycline may have potential value in treating these diseases.


Atherosclerosis | 2009

Inhibition of reactive oxygen species attenuates aneurysm formation in a murine model

Wanfen Xiong; Jason N. MacTaggart; Rebecca Knispel; Jennifer M. Worth; Zhen Zhu; Yulong Li; Yimin Sun; B. Timothy Baxter; Jason M. Johanning

Reactive oxygen species (ROS) are increased in human abdominal aortic aneurysms (AAA). NADPH oxidases are the predominant source of superoxide anion (O(2)(-)) in the vasculature. Inducible nitric oxide synthase (iNOS) produces a significant amount of nitric oxide (NO) during inflammatory processes. We hypothesized that ROS produced by NADPH oxidases and iNOS played an important role in aneurysm formation. We examined this hypothesis using selective blockade of NADPH oxidases and iNOS in a murine model of AAA. Mice, including C57BL/6, iNOS knockout (iNOS(-/-)) mice, and its background matched control (C57BL/6), underwent AAA induction by periaortic application of CaCl(2). Aortic diameter was measured at aneurysm induction and harvest. Beginning 1 week prior to aneurysm induction and continuing to aortic harvest 6 weeks later, one group of the C57BL/6 mice were treated with orally administered apocynin (NADPH oxidase inhibitor). Control mice were given water. The mean diameter and change in diameter of each group were compared with concurrent controls. Aortic levels of the NO metabolite, NO(x) (NO(2) and NO(3)), were significantly increased in CaCl(2)-treated wild type mice. INOS(-/-) mice were partly resistant to aneurysm induction. This was associated with reduced expression of matrix metalloproteinase (MMP)-2 and MMP-9 and decreased production of NO(x) in the aortic tissues. Inhibition of NADPH oxidase by apocynin also blocked aneurysm formation. In conclusion, both iNOS deficiency and NADPH oxidase inhibition suppressed aneurysm formation in association with decreased NO(x) levels. These studies suggest that both NADPH oxidase and iNOS pathways contribute to ROS production and AAA development.


Circulation Research | 2012

MMP-2 Regulates Erk1/2 Phosphorylation and Aortic Dilatation in Marfan Syndrome

Wanfen Xiong; Trevor Meisinger; Rebecca Knispel; Jennifer M. Worth; B. Timothy Baxter

Rationale: Aneurysm and dissection of the ascending thoracic aorta are the main cardiovascular complications of Marfan syndrome (MFS) resulting in premature death. Studies using mouse models of MFS have shown that activation of transforming growth factor-beta (TGF-&bgr;) and the concomitant upregulation of matrix metalloproteinases (MMPs) contribute to aneurysm development. Our previous study showed that doxycycline delayed aneurysm rupture in a mouse model of MFS, Fbn1mgR/mgR. Losartan has been shown to prevent aneurysms in another mouse model of MFS, Fbn1C1039G/+, through inhibition of the Erk1/2 pathway. However, the role of MMP-2 in MFS and effect of losartan on the lifespan of MFS mice remain unknown. Objective: We investigated the role of MMP-2 in MFS and compared the effects of losartan and doxycycline on aortic dilatation and survival in Fbn1mgR/mgR mice. Methods and Results: By life table analysis, we found that losartan and doxycycline improved the survival of Fbn1mgR/mgR mice. Gelatin zymography and Western blot data showed that only doxycycline inhibited MMP-2 expression, whereas both drugs decreased Erk1/2 phosphorylation. When combined, only one of nine mice died within the 30-week study; aortic histology and diameter were normalized and the effects on Smad2 phosphorylation was additive. To further explore the role of MMP-2 in MFS, we created MMP-2–deficient Fbn1mgR/mgR mice. MMP-2 deletion inhibited activation of TGF-&bgr; and phosphorylation of Erk1/2 and Smad2 and prolonged the lifespan of the mice. Conclusions: These studies demonstrated that inhibition of MMP-2 by doxycycline delayed the manifestations of MFS, in part, through its ability to decrease active TGF-&bgr; and the noncanonical signaling cascade downstream of TGF-&bgr;. This study further suggested that targeting TGF-&bgr; signaling at different points might be a more effective strategy for inhibiting disease progression.


Genes & Development | 2012

MT1-MMP regulates the PI3Kδ•Mi-2/NuRD-dependent control of macrophage immune function

Ryoko Shimizu-Hirota; Wanfen Xiong; B. Timothy Baxter; Steven L. Kunkel; Ivan Maillard; Xiao Wei Chen; Farideh Sabeh; Rui Liu; Xiao Yan Li; Stephen J. Weiss

Macrophages play critical roles in events ranging from host defense to obesity and cancer, where they infiltrate affected tissues and orchestrate immune responses in tandem with the remodeling of the extracellular matrix (ECM). Despite the dual roles played by macrophages in inflammation, the functions of macrophage-derived proteinases are typically relegated to tissue-invasive or -degradative events. Here we report that the membrane-tethered matrix metalloenzyme MT1-MMP not only serves as an ECM-directed proteinase, but unexpectedly controls inflammatory gene responses wherein MT1-MMP(-/-) macrophages mount exaggerated chemokine and cytokine responses to immune stimuli both in vitro and in vivo. MT1-MMP modulates inflammatory responses in a protease-independent fashion in tandem with its trafficking to the nuclear compartment, where it triggers the expression and activation of a phosphoinositide 3-kinase δ (PI3Kδ)/Akt/GSK3β signaling cascade. In turn, MT1-MMP-dependent PI3Kδ activation regulates the immunoregulatory Mi-2/NuRD nucleosome remodeling complex that is responsible for controlling macrophage immune response. These findings identify a novel role for nuclear MT1-MMP as a previously unsuspected transactivator of signaling networks central to macrophage immune responses.

Collaboration


Dive into the Wanfen Xiong's collaboration.

Top Co-Authors

Avatar

B. Timothy Baxter

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rebecca Knispel

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Carson

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Trevor Meisinger

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jason N. MacTaggart

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer M. Worth

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Matthew A. Dale

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Melissa Suh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bernard T. Baxter

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrew Karpisek

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge