Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. V. V. Prasad is active.

Publication


Featured researches published by B. V. V. Prasad.


Journal of Virology | 2011

Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant: implications for epochal evolution.

Sreejesh Shanker; Jae-Mun Choi; Banumathi Sankaran; Robert L. Atmar; Mary K. Estes; B. V. V. Prasad

ABSTRACT Susceptibility to norovirus (NoV), a major pathogen of epidemic gastroenteritis, is associated with histo-blood group antigens (HBGAs), which are also cell attachment factors for this virus. GII.4 NoV strains are predominantly associated with worldwide NoV epidemics with a periodic emergence of new variants. The sequence variations in the surface-exposed P domain of the capsid protein resulting in differential HBGA binding patterns and antigenicity are suggested to drive GII.4 epochal evolution. To understand how temporal sequence variations affect the P domain structure and contribute to epochal evolution, we determined the P domain structure of a 2004 variant with ABH and secretor Lewis HBGAs and compared it with the previously determined structure of a 1996 variant. We show that temporal sequence variations do not affect the binding of monofucosyl ABH HBGAs but that they can modulate the binding strength of difucosyl Lewis HBGAs and thus could contribute to epochal evolution by the potentiated targeting of new variants to Lewis-positive, secretor-positive individuals. The temporal variations also result in significant differences in the electrostatic landscapes, likely reflecting antigenic variations. The proximity of some of these changes to the HBGA binding sites suggests the possibility of a coordinated interplay between antigenicity and HBGA binding in epochal evolution. From the observation that the regions involved in the formation of the HBGA binding sites can be conformationally flexible, we suggest a plausible mechanism for how norovirus disassociates from salivary mucin-linked HBGA before reassociating with HBGAs linked to intestinal epithelial cells during its passage through the gastrointestinal tract.


Journal of Virology | 2013

The VP8* Domain of Neonatal Rotavirus Strain G10P[11] Binds to Type II Precursor Glycans

Sasirekha Ramani; Nicolas Cortes-Penfield; Liya Hu; Sue E. Crawford; Rita Czakó; David F. Smith; Gagandeep Kang; R. F. Ramig; J. Le Pendu; B. V. V. Prasad; Mary K. Estes

ABSTRACT Naturally occurring bovine-human reassortant rotaviruses with a P[11] VP4 genotype exhibit a tropism for neonates. Interaction of the VP8* domain of the spike protein VP4 with sialic acid was thought to be the key mediator for rotavirus infectivity. However, recent studies have indicated a role for nonsialylated glycoconjugates, including histo-blood group antigens (HBGAs), in the infectivity of human rotaviruses. We sought to determine if the bovine rotavirus-derived VP8* of a reassortant neonatal G10P[11] virus interacts with hitherto uncharacterized glycans. In an array screen of >600 glycans, VP8* P[11] showed specific binding to glycans with the Galβ1-4GlcNAc motif, which forms the core structure of type II glycans and is the precursor of H type II HBGA. The specificity of glycan binding was confirmed through hemagglutination assays; GST-VP8* P[11] hemagglutinates type O, A, and B red blood cells as well as pooled umbilical cord blood erythrocytes. Further, G10P[11] infectivity was significantly enhanced by the expression of H type II HBGA in CHO cells. The bovine-origin VP4 was confirmed to be essential for this increased infectivity, using laboratory-derived reassortant viruses generated from sialic acid binding rotavirus SA11-4F and a bovine G10P[11] rotavirus, B223. The binding to a core glycan unit has not been reported for any rotavirus VP4. Core glycan synthesis is constitutive in most cell types, and modification of these glycans is thought to be developmentally regulated. These studies provide the first molecular basis for understanding neonatal rotavirus infections, indicating that glycan modification during neonatal development may mediate the age-restricted infectivity of neonatal viruses.


Journal of Virology | 2010

Conformational Changes in the Capsid of a Calicivirus upon Interaction with Its Functional Receptor

Robert J. Ossiboff; Y. Zhou; P. J. Lightfoot; B. V. V. Prasad; John S. L. Parker

ABSTRACT Nonenveloped viral capsids are metastable structures that undergo conformational changes during virus entry that lead to interactions of the capsid or capsid fragments with the cell membrane. For members of the Caliciviridae, neither the nature of these structural changes in the capsid nor the factor(s) responsible for inducing these changes is known. Feline junctional adhesion molecule A (fJAM-A) mediates the attachment and infectious viral entry of feline calicivirus (FCV). Here, we show that the infectivity of some FCV isolates is neutralized following incubation with the soluble receptor at 37°C. We used this property to select mutants resistant to preincubation with the soluble receptor. We isolated and sequenced 24 soluble receptor-resistant (srr) mutants and characterized the growth properties and receptor-binding activities of eight mutants. The location of the mutations within the capsid structure of FCV was mapped using a new 3.6-Å structure of native FCV. The srr mutations mapped to the surface of the P2 domain were buried at the protruding domain dimer interface or were present in inaccessible regions of the capsid protein. Coupled with data showing that both the parental FCV and the srr mutants underwent increases in hydrophobicity upon incubation with the soluble receptor at 37°C, these findings indicate that FCV likely undergoes conformational change upon interaction with its receptor. Changes in FCV capsid conformation following its interaction with fJAM-A may be important for subsequent interactions of the capsid with cellular membranes, membrane penetration, and genome delivery.


Journal of Virology | 2013

Structural Basis of Substrate Specificity and Protease Inhibition in Norwalk Virus

Z. Muhaxhiri; L. Deng; Sreejesh Shanker; Banumathi Sankaran; Mary K. Estes; Timothy Palzkill; Y. Song; B. V. V. Prasad

ABSTRACT Norwalk virus (NV), the prototype human calicivirus, is the leading cause of nonbacterial acute gastroenteritis. The NV protease cleaves the polyprotein encoded by open reading frame 1 of the viral genome at five nonhomologous sites, releasing six nonstructural proteins that are essential for viral replication. The structural details of how NV protease recognizes multiple substrates are unclear. In our X-ray structure of an NV protease construct, we observed that the C-terminal tail, representing the native substrate positions P5 to P1, is inserted into the active site cleft of the neighboring protease molecule, providing atomic details of how NV protease recognizes a substrate. The crystallographic structure of NV protease with the C-terminal tail redesigned to mimic P4 to P1 of another substrate site provided further structural details on how the active site accommodates sequence variations in the substrates. Based on these structural analyses, substrate-based aldehyde inhibitors were synthesized and screened for inhibition potency. Crystallographic structures of the protease in complex with each of the three most potent inhibitors were determined. These structures showed concerted conformational changes in the S4 and S2 pockets of the protease to accommodate variations in the P4 and P2 residues of the substrate/inhibitor, which could be a mechanism for how the NV protease recognizes multiple sites in the polyprotein with differential affinities during virus replication. These structures further indicate that the mechanism of inhibition by these inhibitors involves covalent bond formation with the side chain of the conserved cysteine in the active site by nucleophilic addition, and such substrate-based aldehydes could be effective protease inhibitors.


Journal of Virology | 2014

The influenza A virus protein NS1 displays structural polymorphism

B. Carrillo; Jae-Mun Choi; Zachary A. Bornholdt; Banumathi Sankaran; Andrew P. Rice; B. V. V. Prasad

ABSTRACT NS1 of influenza A virus is a potent antagonist of host antiviral interferon responses. This multifunctional protein with two distinctive domains, an RNA-binding domain (RBD) and an effector domain (ED) separated by a linker region (LR), is implicated in replication, pathogenesis, and host range. Although the structures of individual domains of NS1 from different strains of influenza viruses have been reported, the only structure of full-length NS1 available to date is from an H5N1 strain (A/Vietnam/1203/2004). By carrying out crystallographic analyses of full-length H6N6-NS1 (A/blue-winged teal/MN/993/1980) and an LR deletion mutant, combined with mutational analysis, we show here that these full-length NS1 structures provide an exquisite structural sampling of various conformational states of NS1 that based on the orientation of the ED with respect to RBD can be summarized as “open,” “semi-open,” and “closed” conformations. Our studies show that preference for these states is clearly dictated by determinants such as linker length, residue composition at position 71, and a mechanical hinge, providing a structural basis for strain-dependent functional variations in NS1. Because of the flexibility inherent in the LR, any particular NS1 could sample the conformational space around these states to engage ED in different quaternary interactions so that it may participate in specific protein-protein or protein-RNA interactions to allow for the known multifunctionality of NS1. We propose that such conformational plasticity provides a mechanism for autoregulating NS1 functions, depending on its temporal distribution, posttranslational modifications, and nuclear or cellular localization, during the course of virus infection. IMPORTANCE NS1 of influenza A virus is a multifunctional protein associated with numerous strain-specific regulatory functions during viral infection, including conferring resistance to antiviral interferon induction, replication, pathogenesis, virulence, and host range. NS1 has two domains, an RNA-binding domain and an effector domain separated by a linker. To date, the only full-length NS1 structure available is that from an H5N1 strain (A/Vietnam/1203/2004). Here, we determined crystal structures of the wild type and a linker region mutant of the H6N6 NS1 (A/blue-winged teal/MN/993/1980), which together with the previously determined H5N1 NS1 structure show that NS1 exhibits significant strain-dependent structural polymorphism due to variations in linker length, residue composition at position 71, and a mechanical hinge. Such a structural polymorphism may be the basis for strain-specific functions associated with NS1.


Journal of Virology | 2014

Structural Analysis of Determinants of Histo-Blood Group Antigen Binding Specificity in Genogroup I Noroviruses

Sreejesh Shanker; Rita Czakó; Banumathi Sankaran; Robert L. Atmar; Mary K. Estes; B. V. V. Prasad

ABSTRACT Human noroviruses (NoVs) cause acute epidemic gastroenteritis. Susceptibility to the majority of NoV infections is determined by genetically controlled secretor-dependent expression of histo-blood group antigens (HBGAs), which are also critical for NoV attachment to host cells. Human NoVs are classified into two major genogroups (genogroup I [GI] and GII), with each genogroup further divided into several genotypes. GII NoVs are more prevalent and exhibit periodic emergence of new variants, suggested to be driven by altered HBGA binding specificities and antigenic drift. Recent epidemiological studies show increased activity among GI NoVs, with some members showing the ability to bind nonsecretor HBGAs. NoVs bind HBGAs through the protruding (P) domain of the major capsid protein VP1. GI NoVs, similar to GII, exhibit significant sequence variations in the P domain; it is unclear how these variations affect HBGA binding specificities. To understand the determinants of possible strain-specific HBGA binding among GI NoVs, we determined the structure of the P domain of a GI.7 clinical isolate and compared it to the previously determined P domain structures of GI.1 and GI.2 strains. Our crystallographic studies revealed significant structural differences, particularly in the loop regions of the GI.7 P domain, altering its surface topography and electrostatic landscape and potentially indicating antigenic variation. The GI.7 strain bound to H- and A-type, Lewis secretor, and Lewis nonsecretor families of HBGAs, allowing us to further elucidate the structural determinants of nonsecretor HBGA binding among GI NoVs and to infer several contrasting and generalizable features of HBGA binding in the GI NoVs. IMPORTANCE Human noroviruses (NoVs) cause acute epidemic gastroenteritis. Recent epidemiological studies have shown increased prevalence of genogroup I (GI) NoVs. Although secretor-positive status is strongly correlated with NoV infection, cases of NoV infection associated with secretor-negative individuals are reported. Biochemical studies have shown that GI NoVs exhibit genotype-dependent binding to nonsecretor histo-blood group antigens (HBGAs). From our crystallographic studies of a GI.7 NoV, in comparison with previous studies on GI.1 and GI.2 NoVs, we show that genotypic differences translate to extensive structural changes in the loop regions that significantly alter the surface topography and electrostatic landscape of the P domain; these features may be indicative of antigenic variations contributing to serotypic differentiation in GI NoVs and also differential modulation of the HBGA binding characteristics. A significant finding is that the threshold length and the structure of one of the loops are critical determinants in the binding of GI NoVs to nonsecretor HBGAs.


Journal of Virology | 2006

Reovirus Variants Selected for Resistance to Ammonium Chloride Have Mutations in Viral Outer-Capsid Protein σ3

Kimberly M. Clark; J. Denise Wetzel; Yingqi Gu; Daniel H. Ebert; Stephanie A. McAbee; Emily K. Stoneman; Geoffrey S. Baer; Yuwei Zhu; Gregory J. Wilson; B. V. V. Prasad; Terence S. Dermody

ABSTRACT Mammalian reoviruses are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis resulting in removal of the σ3 protein and proteolytic cleavage of the μ1/μ1C protein. Ammonium chloride (AC) is a weak base that blocks disassembly of reovirus virions by inhibiting acidification of intracellular vacuoles. To identify domains in reovirus proteins that influence pH-sensitive steps in viral disassembly, we adapted strain type 3 Dearing (T3D) to growth in murine L929 cells treated with AC. In comparison to wild-type (wt) T3D, AC-adapted (ACA-D) variant viruses exhibited increased yields in AC-treated cells. AC resistance of reassortant viruses generated from a cross of wt type 1 Lang and ACA-D variant ACA-D1 segregated with the σ3-encoding S4 gene. The deduced σ3 amino acid sequences of six independently derived ACA-D variants contain one or two mutations each, affecting a total of six residues. Four of these mutations, I180T, A246G, I347S, and Y354H, cluster in the virion-distal lobe of σ3. Linkage of these mutations to AC resistance was confirmed in experiments using reovirus disassembly intermediates recoated with wt or mutant σ3 proteins. In comparison to wt virions, ACA-D viruses displayed enhanced susceptibility to proteolysis by endocytic protease cathepsin L. Image reconstructions of cryoelectron micrographs of three ACA-D viruses that each contain a single mutation in the virion-distal lobe of σ3 demonstrated native capsid protein organization and minimal alterations in σ3 structure. These results suggest that mutations in σ3 that confer resistance to inhibitors of vacuolar acidification identify a specific domain that regulates proteolytic disassembly.


Journal of Virology | 2014

Structural Plasticity of the Coiled-Coil Domain of Rotavirus NSP4

Narayan P. Sastri; M. Viskovska; Joseph M. Hyser; Mark R. Tanner; L. B. Horton; Banumathi Sankaran; B. V. V. Prasad; Mary K. Estes

ABSTRACT Rotavirus (RV) nonstructural protein 4 (NSP4) is a virulence factor that disrupts cellular Ca2+ homeostasis and plays multiple roles regulating RV replication and the pathophysiology of RV-induced diarrhea. Although its native oligomeric state is unclear, crystallographic studies of the coiled-coil domain (CCD) of NSP4 from two different strains suggest that it functions as a tetramer or a pentamer. While the CCD of simian strain SA11 NSP4 forms a tetramer that binds Ca2+ at its core, the CCD of human strain ST3 forms a pentamer lacking the bound Ca2+ despite the residues (E120 and Q123) that coordinate Ca2+ binding being conserved. In these previous studies, while the tetramer crystallized at neutral pH, the pentamer crystallized at low pH, suggesting that preference for a particular oligomeric state is pH dependent and that pH could influence Ca2+ binding. Here, we sought to examine if the CCD of NSP4 from a single RV strain can exist in two oligomeric states regulated by Ca2+ or pH. Biochemical, biophysical, and crystallographic studies show that while the CCD of SA11 NSP4 exhibits high-affinity binding to Ca2+ at neutral pH and forms a tetramer, it does not bind Ca2+ at low pH and forms a pentamer, and the transition from tetramer to pentamer is reversible with pH. Mutational analysis shows that Ca2+ binding is necessary for the tetramer formation, as an E120A mutant forms a pentamer. We propose that the structural plasticity of NSP4 regulated by pH and Ca2+ may form a basis for its pleiotropic functions during RV replication. IMPORTANCE The nonstructural protein NSP4 of rotavirus is a multifunctional protein that plays an important role in virus replication, morphogenesis, and pathogenesis. Previous crystallography studies of the coiled-coil domain (CCD) of NSP4 from two different rotavirus strains showed two distinct oligomeric states, a Ca2+-bound tetrameric state and a Ca2+-free pentameric state. Whether NSP4 CCD from the same strain can exist in different oligomeric states and what factors might regulate its oligomeric preferences are not known. This study used a combination of biochemical, biophysical, and crystallography techniques and found that the NSP4 CCD can undergo a reversible transition from a Ca2+-bound tetramer to a Ca2+-free pentamer in response to changes in pH. From these studies, we hypothesize that this remarkable structural adaptability of the CCD forms a basis for the pleiotropic functional properties of NSP4.


Journal of Virology | 2014

Probing the Sites of Interactions of Rotaviral Proteins Involved in Replication

M. Viskovska; R. Anish; Liya Hu; Dar-Chone Chow; A. M. Hurwitz; N. G. Brown; Timothy Palzkill; Mary K. Estes; B. V. V. Prasad

ABSTRACT Replication and packaging of the rotavirus genome occur in cytoplasmic compartments called viroplasms, which form during virus infection. These processes are orchestrated by yet-to-be-understood complex networks of interactions involving nonstructural proteins (NSPs) 2, 5, and 6 and structural proteins (VPs) 1, 2, 3, and 6. The multifunctional enzyme NSP2, an octamer with RNA binding activity, is critical for viroplasm formation with its binding partner, NSP5, and for genome replication/packaging through its interactions with replicating RNA, the viral polymerase VP1, and the inner core protein VP2. Using isothermal calorimetry, biolayer interferometry, and peptide array screening, we examined the interactions between NSP2, VP1, VP2, NSP5, and NSP6. These studies provide the first evidence that NSP2 can directly bind to VP1, VP2, and NSP6, in addition to the previously known binding to NSP5. The interacting sites identified from reciprocal peptide arrays were found to be in close proximity to the RNA template entry and double-stranded RNA (dsRNA) exit tunnels of VP1 and near the catalytic cleft and RNA-binding grooves of NSP2; these sites are consistent with the proposed role of NSP2 in facilitating dsRNA synthesis by VP1. Peptide screening of VP2 identified NSP2-binding sites in the regions close to the intersubunit junctions, suggesting that NSP2 binding could be a regulatory mechanism for preventing the premature self-assembly of VP2. The binding sites on NSP2 for NSP6 were found to overlap that of VP1, and the NSP5-binding sites overlap those of VP2 and VP1, suggesting that interaction of these proteins with NSP2 is likely spatially and/or temporally regulated. IMPORTANCE Replication and packaging of the rotavirus genome occur in cytoplasmic compartments called viroplasms that form during virus infection and are orchestrated by complex networks of interactions involving nonstructural proteins (NSPs) and structural proteins (VPs). A multifunctional RNA-binding NSP2 octamer with nucleotidyl phosphatase activity is central to viroplasm formation and RNA replication. Here we provide the first evidence that NSP2 can directly bind to VP1, VP2, and NSP6, in addition to the previously known binding to NSP5. The interacting sites identified from peptide arrays are consistent with the proposed role of NSP2 in facilitating dsRNA synthesis by VP1 and also point to NSP2s possible role in preventing the premature self-assembly of VP2 cores. Our findings lead us to propose that the NSP2 octamer with multiple enzymatic activities is a principal regulator of viroplasm formation, recruitment of viral proteins into the viroplasms, and possibly genome replication.


Journal of Virology | 2012

Crystallographic Analysis of Rotavirus NSP2-RNA Complex Reveals Specific Recognition of 5' GG Sequence for RTPase Activity.

Liya Hu; Dar-Chone Chow; John T. Patton; Timothy Palzkill; Mary K. Estes; B. V. V. Prasad

ABSTRACT Rotavirus nonstructural protein NSP2, a functional octamer, is critical for the formation of viroplasms, which are exclusive sites for replication and packaging of the segmented double-stranded RNA (dsRNA) rotavirus genome. As a component of replication intermediates, NSP2 is also implicated in various replication-related activities. In addition to sequence-independent single-stranded RNA-binding and helix-destabilizing activities, NSP2 exhibits monomer-associated nucleoside and 5′ RNA triphosphatase (NTPase/RTPase) activities that are mediated by a conserved H225 residue within a narrow enzymatic cleft. Lack of a 5′ γ-phosphate is a common feature of the negative-strand RNA [(−)RNA] of the packaged dsRNA segments in rotavirus. Strikingly, all (−)RNAs (of group A rotaviruses) have a 5′ GG dinucleotide sequence. As the only rotavirus protein with 5′ RTPase activity, NSP2 is implicated in the removal of the γ-phosphate from the rotavirus (−)RNA. To understand how NSP2, despite its sequence-independent RNA-binding property, recognizes (−)RNA to hydrolyze the γ-phosphate within the catalytic cleft, we determined a crystal structure of NSP2 in complex with the 5′ consensus sequence of minus-strand rotavirus RNA. Our studies show that the 5′ GG of the bound oligoribonucleotide interacts extensively with highly conserved residues in the NSP2 enzymatic cleft. Although these residues provide GG-specific interactions, surface plasmon resonance studies suggest that the C-terminal helix and other basic residues outside the enzymatic cleft account for sequence-independent RNA binding of NSP2. A novel observation from our studies, which may have implications in viroplasm formation, is that the C-terminal helix of NSP2 exhibits two distinct conformations and engages in domain-swapping interactions, which result in the formation of NSP2 octamer chains.

Collaboration


Dive into the B. V. V. Prasad's collaboration.

Top Co-Authors

Avatar

Mary K. Estes

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Banumathi Sankaran

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Liya Hu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Robert L. Atmar

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sreejesh Shanker

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Timothy Palzkill

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Dar-Chone Chow

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae-Mun Choi

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

M. Viskovska

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge