Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Banumathi Sankaran is active.

Publication


Featured researches published by Banumathi Sankaran.


Journal of Biological Chemistry | 1995

Both P-glycoprotein Nucleotide-binding Sites Are Catalytically Active

Ina L. Urbatsch; Banumathi Sankaran; Sumedha Bhagat; Alan E. Senior

The technique of vanadate trapping of nucleotide was used to study catalytic sites of P-glycoprotein (Pgp) in plasma membranes from multidrug-resistant Chinese hamster ovary cells. Vanadate trapping of Mg- or Co-8-azido-nucleotide (1 mol/mol of Pgp) caused complete inhibition of Pgp ATPase activity, with reactivation rates at 37°C of 1.4 × 10-3 s−1 (t1/2 = 8 min) or 3.3 × 10−4 s−1 (t1/2 = 35 min), respectively. UV irradiation of the inhibited Pgp yielded permanent inactivation of ATPase activity and specific photolabeling of Pgp. Mild trypsin digestion showed that the two nucleotide sites were labeled in equal proportion. The results show that both nucleotide sites in Pgp are capable of nucleotide hydrolysis, that vanadate trapping of nucleotide at either site completely prevents hydrolysis at both sites, and that vanadate trapping of nucleotide in the N- or C-terminal nucleotide sites occurs non-selectively. A minimal scheme is presented to explain inhibition by vanadate trapping of nucleotide and to describe the normal catalytic pathway. The inhibited Pgp·Mg-nucleotide·vanadate complex is probably an analog of the catalytic transition state, implying that when one nucleotide site assumes the catalytic transition state conformation the other site cannot do so and suggesting that the two sites may alternate in catalysis.


Journal of Virology | 2011

Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant: implications for epochal evolution.

Sreejesh Shanker; Jae-Mun Choi; Banumathi Sankaran; Robert L. Atmar; Mary K. Estes; B. V. V. Prasad

ABSTRACT Susceptibility to norovirus (NoV), a major pathogen of epidemic gastroenteritis, is associated with histo-blood group antigens (HBGAs), which are also cell attachment factors for this virus. GII.4 NoV strains are predominantly associated with worldwide NoV epidemics with a periodic emergence of new variants. The sequence variations in the surface-exposed P domain of the capsid protein resulting in differential HBGA binding patterns and antigenicity are suggested to drive GII.4 epochal evolution. To understand how temporal sequence variations affect the P domain structure and contribute to epochal evolution, we determined the P domain structure of a 2004 variant with ABH and secretor Lewis HBGAs and compared it with the previously determined structure of a 1996 variant. We show that temporal sequence variations do not affect the binding of monofucosyl ABH HBGAs but that they can modulate the binding strength of difucosyl Lewis HBGAs and thus could contribute to epochal evolution by the potentiated targeting of new variants to Lewis-positive, secretor-positive individuals. The temporal variations also result in significant differences in the electrostatic landscapes, likely reflecting antigenic variations. The proximity of some of these changes to the HBGA binding sites suggests the possibility of a coordinated interplay between antigenicity and HBGA binding in epochal evolution. From the observation that the regions involved in the formation of the HBGA binding sites can be conformationally flexible, we suggest a plausible mechanism for how norovirus disassociates from salivary mucin-linked HBGA before reassociating with HBGAs linked to intestinal epithelial cells during its passage through the gastrointestinal tract.


Nature | 2012

Structure of the carboxy-terminal region of a KCNH channel

Tinatin I. Brelidze; Anne E. Carlson; Banumathi Sankaran; William N. Zagotta

The KCNH family of ion channels, comprising ether-à-go-go (EAG), EAG-related gene (ERG), and EAG-like (ELK) K+-channel subfamilies, is crucial for repolarization of the cardiac action potential, regulation of neuronal excitability and proliferation of tumour cells. The carboxy-terminal region of KCNH channels contains a cyclic-nucleotide-binding homology domain (CNBHD) and C-linker that couples the CNBHD to the pore. The C-linker/CNBHD is essential for proper function and trafficking of ion channels in the KCNH family. However, despite the importance of the C-linker/CNBHD for the function of KCNH channels, the structural basis of ion-channel regulation by the C-linker/CNBHD is unknown. Here we report the crystal structure of the C-linker/CNBHD of zebrafish ELK channels at 2.2-Å resolution. Although the overall structure of the C-linker/CNBHD of ELK channels is similar to the cyclic-nucleotide-binding domain (CNBD) structure of the related hyperpolarization-activated cyclic-nucleotide-modulated (HCN) channels, there are marked differences. Unlike the CNBD of HCN, the CNBHD of ELK displays a negatively charged electrostatic profile that explains the lack of binding and regulation of KCNH channels by cyclic nucleotides. Instead of cyclic nucleotide, the binding pocket is occupied by a short β-strand. Mutations of the β-strand shift the voltage dependence of activation to more depolarized voltages, implicating the β-strand as an intrinsic ligand for the CNBHD of ELK channels. In both ELK and HCN channels the C-linker is the site of virtually all of the intersubunit interactions in the C-terminal region. However, in the zebrafish ELK structure there is a reorientation in the C-linker so that the subunits form dimers instead of tetramers, as observed in HCN channels. These results provide a structural framework for understanding the regulation of ion channels in the KCNH family by the C-linker/CNBHD and may guide the design of specific drugs.


Science | 2016

De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity

Zibo Chen; Benjamin Groves; Robert A. Langan; Gustav Oberdorfer; Alex Ford; Jason Gilmore; Chunfu Xu; Frank DiMaio; Jose H. Pereira; Banumathi Sankaran; Georg Seelig; Peter H. Zwart; David Baker

Building with designed proteins General design principles for protein interaction specificity are challenging to extract. DNA nanotechnology, on the other hand, has harnessed the limited set of hydrogen-bonding interactions from Watson-Crick base-pairing to design and build a wide range of shapes. Protein-based materials have the potential for even greater geometric and chemical diversity, including additional functionality. Boyken et al. designed a class of protein oligomers that have interaction specificity determined by modular arrays of extensive hydrogen bond networks (see the Perspective by Netzer and Fleishman). They use the approach, which could one day become programmable, to build novel topologies with two concentric rings of helices. Science, this issue p. 680; see also p. 657 Protein oligomers with designed arrays of hydrogen bond networks enable programming of interaction specificity. In nature, structural specificity in DNA and proteins is encoded differently: In DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here, we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen-bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen-bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen-bond networks with atomic accuracy enables the programming of protein interaction specificity for a broad range of synthetic biology applications; more generally, our results demonstrate that, even with the tremendous diversity observed in nature, there are fundamentally new modes of interaction to be discovered in proteins.


Nature Structural & Molecular Biology | 2010

Structural basis of Fic-mediated adenylylation.

Junyu Xiao; Carolyn A. Worby; Seema Mattoo; Banumathi Sankaran; Jack E. Dixon

The Fic family of adenylyltransferases, defined by a core HPFx(D/E)GN(G/K)R motif, consists of over 2,700 proteins found in organisms from bacteria to humans. The immunoglobulin-binding protein A (IbpA) from the bacterial pathogen Histophilus somni contains two Fic domains that adenylylate the switch1 tyrosine residue of Rho-family GTPases, allowing the bacteria to subvert host defenses. Here we present the structure of the second Fic domain of IbpA (IbpAFic2) in complex with its substrate, Cdc42. IbpAFic2-bound Cdc42 mimics the GDI-bound state of Rho GTPases, with both its switch1 and switch2 regions gripped by IbpAFic2. Mutations disrupting the IbpAFic2–Cdc42 interface impair adenylylation and cytotoxicity. Notably, the switch1 tyrosine of Cdc42 is adenylylated in the structure, providing the first structural view for this post-translational modification. We also show that the nucleotide-binding mechanism is conserved among Fic proteins and propose a catalytic mechanism for this recently discovered family of enzymes.


BMC Biology | 2016

Structure of the catalytic domain of the colistin resistance enzyme MCR-1

Vlatko Stojanoski; Banumathi Sankaran; B. V. Venkataram Prasad; Laurent Poirel; Patrice Nordmann; Timothy Palzkill

BackgroundDue to the paucity of novel antibiotics, colistin has become a last resort antibiotic for treating multidrug resistant bacteria. Colistin acts by binding the lipid A component of lipopolysaccharides and subsequently disrupting the bacterial membrane. The recently identified plasmid-encoded MCR-1 enzyme is the first transmissible colistin resistance determinant and is a cause for concern for the spread of this resistance trait. MCR-1 is a phosphoethanolamine transferase that catalyzes the addition of phosphoethanolamine to lipid A to decrease colistin affinity.ResultsThe structure of the catalytic domain of MCR-1 at 1.32 Å reveals the active site is similar to that of related phosphoethanolamine transferases.ConclusionsThe putative nucleophile for catalysis, threonine 285, is phosphorylated in cMCR-1 and a zinc is present at a conserved site in addition to three zincs more peripherally located in the active site. As noted for catalytic domains of other phosphoethanolamine transferases, binding sites for the lipid A and phosphatidylethanolamine substrates are not apparent in the cMCR-1 structure, suggesting that they are present in the membrane domain.


Nature Communications | 2017

Structure and function of the Zika virus full-length NS5 protein.

Baoyu Zhao; Guanghui Yi; Fenglei Du; Yin Chih Chuang; Robert C. Vaughan; Banumathi Sankaran; C. Cheng Kao; Pingwei Li

The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions to those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Overall, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.


Journal of Molecular Biology | 2009

Structural changes common to catalysis in the Tpx peroxiredoxin subfamily.

Andrea Hall; Banumathi Sankaran; Leslie B. Poole; P. Andrew Karplus

Thiol peroxidases (Tpxs) are dimeric 2-Cys peroxiredoxins from bacteria that preferentially reduce alkyl hydroperoxides. Catalysis requires two conserved residues, the peroxidatic cysteine and the resolving cysteine, which are located in helix alpha(2) and helix alpha(3), respectively. The partial unraveling of helices alpha(2) and alpha(3) during catalysis allows for the formation of an intramolecular disulfide between these two residues. Here, we present three structures of Escherichia coli Tpx representing the fully folded (peroxide binding site intact), locally unfolded (disulfide bond), and partially locally unfolded (transitional state) conformations. We also compare known Tpx crystal structures and analyze the sequence-conservation patterns among nearly 300 Tpx sequences. Twelve fully conserved Tpx-specific residues cluster at the active site and dimer interface, and an additional 37 highly conserved residues are mostly located in a cradle providing the environment for helix alpha(2). Using the structures determined here as representative fully folded, transitional, and locally unfolded Tpx conformations, we describe in detail the structural changes associated with catalysis in the Tpx subfamily. Key insights include the description of a conserved hydrophobic collar around the active site, a set of conserved packing interactions between helices alpha(2) and alpha(3) that allow the local unfolding of alpha(2) to trigger the partial unfolding of alpha(3), a conserved dimer interface that anchors the ends of helices alpha(2) and alpha(3) to stabilize the active site during structural transitions, and a conserved set of residues constituting a cradle that stabilizes the two discrete conformations of helix alpha(2) involved in catalysis. The involvement of the dimer interface in stabilizing active-site folding and in forming the hydrophobic collar implies that Tpx is an obligate homodimer and explains the high conservation of interface residues.


Journal of Virology | 2013

Structural Basis of Substrate Specificity and Protease Inhibition in Norwalk Virus

Z. Muhaxhiri; L. Deng; Sreejesh Shanker; Banumathi Sankaran; Mary K. Estes; Timothy Palzkill; Y. Song; B. V. V. Prasad

ABSTRACT Norwalk virus (NV), the prototype human calicivirus, is the leading cause of nonbacterial acute gastroenteritis. The NV protease cleaves the polyprotein encoded by open reading frame 1 of the viral genome at five nonhomologous sites, releasing six nonstructural proteins that are essential for viral replication. The structural details of how NV protease recognizes multiple substrates are unclear. In our X-ray structure of an NV protease construct, we observed that the C-terminal tail, representing the native substrate positions P5 to P1, is inserted into the active site cleft of the neighboring protease molecule, providing atomic details of how NV protease recognizes a substrate. The crystallographic structure of NV protease with the C-terminal tail redesigned to mimic P4 to P1 of another substrate site provided further structural details on how the active site accommodates sequence variations in the substrates. Based on these structural analyses, substrate-based aldehyde inhibitors were synthesized and screened for inhibition potency. Crystallographic structures of the protease in complex with each of the three most potent inhibitors were determined. These structures showed concerted conformational changes in the S4 and S2 pockets of the protease to accommodate variations in the P4 and P2 residues of the substrate/inhibitor, which could be a mechanism for how the NV protease recognizes multiple sites in the polyprotein with differential affinities during virus replication. These structures further indicate that the mechanism of inhibition by these inhibitors involves covalent bond formation with the side chain of the conserved cysteine in the active site by nucleophilic addition, and such substrate-based aldehydes could be effective protease inhibitors.


Cell Reports | 2016

Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway.

Jacint G. Sanchez; Jessica J. Chiang; Konstantin M. J. Sparrer; Steven L. Alam; Michael Chi; Marcin D. Roganowicz; Banumathi Sankaran; Michaela U. Gack; Owen Pornillos

SUMMARY Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RING dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response.

Collaboration


Dive into the Banumathi Sankaran's collaboration.

Top Co-Authors

Avatar

Choel Kim

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Peter H. Zwart

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy Palzkill

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liya Hu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Barry P. Rosen

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Mary K. Estes

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge