Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Wadsworth is active.

Publication


Featured researches published by B. Wadsworth.


Physical Review C | 2011

Phobos results on charged particle multiplicity and pseudorapidity distributions in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultra-relativistic energies

B. Alver; B. B. Back; M. D. Baker; M. Ballintijn; D.S. Barton; R. R. Betts; A. A. Bickley; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; Z. Chai; V. Chetluru; M.P. Decowski; E. García; T. Gburek; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G.A. Heintzelman; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane

Pseudorapidity distributions of charged particles emitted in Au+Au, Cu+Cu, d+Au, and p+p collisions over a wide energy range have been measured using the PHOBOS detector at the BNL Relativistic Heavy-Ion Collider (RHIC). The centrality dependence of both the charged particle distributions and the multiplicity at midrapidity were measured. Pseudorapidity distributions of charged particles emitted with |{eta}|<5.4, which account for between 95% and 99% of the total charged-particle emission associated with collision participants, are presented for different collision centralities. Both the midrapidity density dN{sub ch}/d{eta} and the total charged-particle multiplicity N{sub ch} are found to factorize into a product of independent functions of collision energy, {radical}(s{sub N{sub N}}), and centrality given in terms of the number of nucleons participating in the collision, N{sub part}. The total charged particle multiplicity, observed in these experiments and those at lower energies, assumes a linear dependence of (lns{sub N{sub N}}){sup 2} over the full range of collision energy of {radical}(s{sub N{sub N}})=2.7-200 GeV.


Physical Review Letters | 2001

Charged particle pseudorapidity density distributions from Au+Au collisions at

B. B. Back; W. Kucewicz; Andrzej Olszewski; A. Budzanowski; C. Halliwell; L. Rosenberg; P. Steinberg; M. Reuter; W. Skulski; J.-L. Tang; K. W. Wozniak; C. Henderson; Willis Lin; B. Wyslouch; E. Garcia; C. Reed; I.C. Park; G. van Nieuwenhuizen; A. H. Wuosmaa; Baker; Burt Holzman; C. Vale; G. S. F. Stephans; S. Manly; R. R. Betts; R. Verdier; G.A. Heintzelman; D.S. Barton; P. Sarin; A. Carroll

The charged-particle pseudorapidity density dN(ch)/d eta has been measured for Au+Au collisions at sqrt[s(NN)] = 130 GeV at RHIC, using the PHOBOS apparatus. The total number of charged particles produced for the 3% most-central Au+Au collisions for /eta/<or=5.4 is found to be 4200+/-470. The evolution of dN(ch)/d eta with centrality is discussed, and compared to model calculations and to data from proton-induced collisions. The data show an enhancement in charged-particle production at midrapidity, while in the fragmentation regions, the results are consistent with expectations from pp and pA scattering.


Physical Review Letters | 2003

\sqrt{s_{NN}}

B. B. Back; A. Iordanova; A. Budzanowski; C. Halliwell; J. Zhang; A. Olszewski; P. Steinberg; F.L.H. Wolfs; W. Skulski; B. Wyslouch; K. W. Wozniak; C. Henderson; Willis Lin; E. Garcia; A.S. Harrington; C. Reed; A. A. Bickley; G. van Nieuwenhuizen; A. H. Wuosmaa; Baker; B. Holzman; C. Vale; R. Teng; I. C. Park; Bruce Becker; S. Manly; R. R. Betts; M. Ballintijn; M. B. Tonjes; D.S. Barton

We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at sqrt[s(NN)]=200 GeV. The spectra were obtained for transverse momenta 0.25<p(T)<6.0 GeV/c, in a pseudorapidity range of 0.2<eta<1.4 in the deuteron direction. The evolution of the spectra with collision centrality is presented in comparison to p+pmacr; collisions at the same collision energy. With increasing centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-p(T) hadrons observed in Au+Au collisions.


Physical Review Letters | 2002

= 130-GeV

B. B. Back; W. Kucewicz; A. Iordanova; A. Budzanowski; C. Halliwell; A. Olszewski; L. Rosenberg; P. Steinberg; M. Reuter; W. Skulski; J.-L. Tang; G. Roland; C. Henderson; Willis Lin; B. Wyslouch; E. García; C. Reed; I.C. Park; G. van Nieuwenhuizen; K. Wozniak; Baker; B. Holzman; C. Vale; R. Teng; G.S.F. Stephans; S. Manly; R. R. Betts; R. Verdier; D.S. Barton; P. Sarin

This paper describes the measurement of collective flow for charged particles in Au+Au collisions at sqrt{s_NN}} = 130 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). An azimuthal anisotropy is observed in the charged particle hit distribution in the PHOBOS multiplicity detector. This anisotropy is presented over a wide range of pseudorapidity (eta) for the first time at this energy. The size of the anisotropy (v_{2}) is thought to probe the degree of equilibration achieved in these collisions. The result here,averaged over momenta and particle species, is observed to reach 7% for peripheral collisions at mid-rapidity, falling off with centrality and increasing |eta|. Data are presented as a function of centrality for |eta|<1.0 and as a function of eta, averaged over centrality, in the angular region -5.0<eta<5.3. These results call into question the common assumption of longitudinal boost invariance over a large region of rapidity in RHIC collisions.


Physics Letters B | 2004

Centrality dependence of charged-hadron transverse-momentum spectra in d+Au collisions at sqrt[s(NN)]=200 GeV.

B. B. Back; M. D. Baker; D.S. Barton; R. R. Betts; M. Ballintijn; A. A. Bickley; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; M.P. Decowski; E. García; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G.A. Heintzelman; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich

We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The spectra were measured for transverse momenta p_T from 0.25 to 4.5 GeV/c in a rapidity range of 0.2 < y_pi < 1.4. The evolution of the spectra is studied as a function of collision centrality, from 65 to 344 participating nucleons. The results are compared to data from proton-antiproton collisions and Au+Au collisions at lower RHIC energies. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at high p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1990

Pseudorapidity and centrality dependence of the collective flow of charged particles in Au + Au collisions at √SNN = 130 GeV

T. Abbott; M. Abreu; Y. Akiba; David E. Alburger; D. R. Beavis; R.R. Betts; L. Birstein; M.A. Bloomer; P.D. Bond; C. Chasman; Y.Y. Chu; B.A. Cole; J.B. Costales; H. J. Crawford; J.B. Cumming; R. Debbe; E. Duek; H.A. Enge; J. Engelage; S. Y. Fung; L. Grodzins; S. Gushue; H. Hamagaki; O. Hansen; P. E. Haustein; S. Hayashi; S. Homma; H.Z. Huang; Y. Ikeda; I. Juricic

The recent availability of 14.6 GeV/c per nucleon 16O and 28Si ions from the Brookhaven National Laboratory Tandem-AGS accelerator facility has prompted the design, construction and operation of a large-solid-angle (25 msr) magnetic spectrometer with particle identification from ∼0.5 to ∼4.7 GeV/c. A small-solid-angle Cherenkov counter complex views the target through the magnet and extends the particle identification up to ∼15 GeV/c. This experiment (E-802) employs event characterization detectors, a charged-particle multiplicity array, a highly segmented lead-glass detector, and a zero degree calorimeter. The facility measures momentum spectra of identified heavy-ion-produced hadrons with high resolution (Δp/p≤0.005) as a function of collision centrality given by triggers from the event characterization detectors. Construction and performance details of the spectrometer components and auxiliary detectors are described.


Physical Review Letters | 2003

Charged hadron transverse momentum distributions in Au+Au collisions at sNN=200 GeV

B. B. Back; M. D. Baker; D.S. Barton; R. R. Betts; M. Ballintijn; A. A. Bickley; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; M.P. Decowski; E. García; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G.A. Heintzelman; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich

We have measured the ratios of antiparticles to particles for charged pions, kaons, and protons near mid-rapidity in central Au+Au collisions at sqrt[s(NN)] = 130 GeV. We observe / = 1.00+/-0.01(stat)+/-0.02(syst), / = 0.91+/-0.07(stat)+/-0.06(syst), and / = 0.60+/-0.04(stat)+/-0.06(syst). The / and / ratios give a consistent estimate of the baryo-chemical potential mu(B) of 45 MeV, a factor of 5-6 smaller than in central Pb+Pb collisions at sqrt[s(NN)] = 17.2 GeV.


Nuclear Physics | 2003

A Single arm spectrometer detector system for high-energy heavy ion experiments

Steven L. Manly; B. B. Back; M. D. Baker; D.S. Barton; R.R. Betts; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; M.P. Decowski; E. García; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; C. Henderson; David Jonathan Hofman; R. S. Hollis; R. Hołyinski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich; Chia-Ming Kuo; Willis Lin

Abstract Argonne flow and Bose-Einstein correlations have been measured in Au-Au collisions at S N N = 130 and 200 GeV using the PHOBOS detector at RHIC. The systematic dependencies of the flow signal on the transverse momentum, pseudorapidity, and centrality of the collision, as well as the beam energy are shown. In addition, results of a 3-dimensional analysis of two-pion correlations in the 200 GeV data are presented.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1997

Ratios of charged antiparticles-to-particles near mid-rapidity in Au + Au collisions at √sNN = 130 GeV

Willis Lin; Yuan-Hann Chang; A. Chen; S.R. Hou; Chih-Hsun Lin; P. Kulinich; John Ryan; P. Steinberg; B. Wadsworth; Bolek Wyslouch

Abstract A large area radial silicon pad detector has been produced, tested, and installed for the WA98 experiment at CERN. This paper describes the structure and the first test results of the silicon sensors used in this detector. Double metal technology has been used to lead the signals from the inner pads to the edge of the sensitive region. The capacitance for each pad has been measured and is shown to vary according to the pad size. Signals from 90Sr radiation have been analysed, and a signal-to-noise ratio of over 30 has been achieved. The RMS noise varies with the capacitance of each pad, and the variation agrees with the specification of the preamplifier. No evidence of cross talk due to the capacitance coupling between two metal layers has been observed.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001

Flow and bose-einstein correlations in Au-Au collisions at RHIC

R. Nouicer; B. B. Back; Russell Richard Betts; K. Gulbrandsen; Burt Holzman; Wojciech Kucewicz; Willis Lin; Johannes Mülmenstädt; G. van Nieuwenhuizen; H. Pernegger; M. Reuter; P. Sarin; G. S. F. Stephans; Vincent Tsay; C. Vale; B. Wadsworth; A. H. Wuosmaa; B. Wyslouch

Abstract The PHOBOS experiment is well positioned to obtain crucial information about relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC), combining a multiplicity counter with a multi-particle spectrometer. The multiplicity arrays will measure the charged-particle multiplicity over the full solid angle. The spectrometer will be able to identify particles at mid-rapidity. The experiment is constructed almost exclusively of silicon pad detectors. Detectors of nine different types are configured in the multiplicity and vertex detector (22,000 channels) and two multi-particle spectrometers (120,000 channels). The overall layout of the experiment, testing of the silicon sensors and the performance of the detectors during the engineering run at RHIC in 1999 are discussed.

Collaboration


Dive into the B. Wadsworth's collaboration.

Top Co-Authors

Avatar

C. Halliwell

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

C. Henderson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D.S. Barton

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. B. Back

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Budzanowski

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Busza

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Iordanova

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

G.A. Heintzelman

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Kucewicz

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Ballintijn

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge