Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Winey is active.

Publication


Featured researches published by B. Winey.


Medical Physics | 2010

Use of a realistic breathing lung phantom to evaluate dose delivery errors

L Court; Joao Seco; Xing-Qi Lu; Kazuyu Ebe; Charles Mayo; Dan Ionascu; B. Winey; Nikos Giakoumakis; M. Aristophanous; R Berbeco; Joerg Rottman; Madeleine Bogdanov; Deborah Schofield; Tania Lingos

PURPOSE To compare the effect of respiration-induced motion on delivered dose (the interplay effect) for different treatment techniques under realistic clinical conditions. METHODS A flexible resin tumor model was created using rapid prototyping techniques based on a computed tomography (CT) image of an actual tumor. Twenty micro-MOSFETs were inserted into the tumor model and the tumor model was inserted into an anthropomorphic breathing phantom. Phantom motion was programed using the motion trajectory of an actual patient. A four-dimensional CT image was obtained and several treatment plans were created using different treatment techniques and planning systems: Conformal (Eclipse), step-and-shoot intensity-modulated radiation therapy (IMRT) (Pinnacle), step-and-shoot IMRT (XiO), dynamic IMRT (Eclipse), complex dynamic IMRT (Eclipse), hybrid IMRT [60% conformal, 40% dynamic IMRT (Eclipse)], volume-modulated arc therapy (VMAT) [single-arc (Eclipse)], VMAT [double-arc (Eclipse)], and complex VMAT (Eclipse). The complex plans were created by artificially pushing the optimizer to give complex multileaf collimator sequences. Each IMRT field was irradiated five times and each VMAT field was irradiated ten times, with each irradiation starting at a random point in the respiratory cycle. The effect of fractionation was calculated by randomly summing the measured doses. The maximum deviation for each measurement point per fraction and the probability that 95% of the model tumor had dose deviations less than 2% and 5% were calculated as a function of the number of fractions. Tumor control probabilities for each treatment plan were calculated and compared. RESULTS After five fractions, measured dose deviations were less than 2% for more than 95% of measurement points within the tumor model for all plans, except the complex dynamic IMRT, step-and-shoot IMRT (XiO), complex VMAT, and single-arc VMAT plans. Reducing the dose rate of the complex IMRT plans from 600 to 200 MU/min reduced the dose deviations to less than 2%. Dose deviations were less than 5% after five fractions for all plans, except the complex single-arc VMAT plan. CONCLUSIONS Rapid prototyping techniques can be used to create realistic tumor models. For most treatment techniques, the dose deviations averaged out after several fractions. Treatments with unusually complicated multileaf collimator sequences had larger dose deviations. For IMRT treat-ments, dose deviations can be reduced by reducing the dose rate. For VMAT treatments, using two arcs instead of one is effective for reducing dose deviations.


Radiation Oncology | 2014

Safety and efficacy of stereotactic body radiotherapy as primary treatment for vertebral metastases: a multi-institutional analysis

Matthias Guckenberger; Frederick Mantel; Peter C. Gerszten; John C. Flickinger; Arjun Sahgal; D. Letourneau; I.S. Grills; M.S. Jawad; Daniel K. Fahim; John H. Shin; B. Winey; Jason P. Sheehan; Ron Kersh

PurposeTo evaluate patient selection criteria, methodology, safety and clinical outcomes of stereotactic body radiotherapy (SBRT) for treatment of vertebral metastases.Materials and methodsEight centers from the United States (n = 5), Canada (n = 2) and Germany (n = 1) participated in the retrospective study and analyzed 301 patients with 387 vertebral metastases. No patient had been exposed to prior radiation at the treatment site. All patients were treated with linac-based SBRT using cone-beam CT image-guidance and online correction of set-up errors in six degrees of freedom.Results387 spinal metastases were treated and the median follow-up was 11.8 months. The median number of consecutive vertebrae treated in a single volume was one (range, 1-6), and the median total dose was 24 Gy (range 8-60 Gy) in 3 fractions (range 1-20). The median EQD210 was 38 Gy (range 12-81 Gy). Median overall survival (OS) was 19.5 months and local tumor control (LC) at two years was 83.9%. On multivariate analysis for OS, male sex (p < 0.001; HR = 0.44), performance status <90 (p < 0.001; HR = 0.46), presence of visceral metastases (p = 0.007; HR = 0.50), uncontrolled systemic disease (p = 0.007; HR = 0.45), >1 vertebra treated with SBRT (p = 0.04; HR = 0.62) were correlated with worse outcomes. For LC, an interval between primary diagnosis of cancer and SBRT of ≤30 months (p = 0.01; HR = 0.27) and histology of primary disease (NSCLC, renal cell cancer, melanoma, other) (p = 0.01; HR = 0.21) were correlated with worse LC. Vertebral compression fractures progressed and developed de novo in 4.1% and 3.6%, respectively. Other adverse events were rare and no radiation induced myelopathy reported.ConclusionsThis multi-institutional cohort study reports high rates of efficacy with spine SBRT. At this time the optimal fractionation within high dose practice is unknown.


Medical Physics | 2009

Evaluation of the interplay effect when using RapidArc to treat targets moving in the craniocaudal or right-left direction

L Court; M Wagar; R Berbeco; Adam Reisner; B. Winey; Debbie Schofield; Dan Ionascu; Aaron M. Allen; R Popple; Tania Lingos

PURPOSE We have investigated the dosimetric errors caused by the interplay between the motions of the LINAC and the tumor during the delivery of a volume modulated arc therapy treatment. This includes the development of an IMRT QA technique, applied here to evaluate RapidArc plans of varying complexity. METHODS An IMRT QA technique was developed, which involves taking a movie of the delivered dose (0.2 s frames) using a 2D ion chamber array. Each frame of the movie is then moved according to a respiratory trace and the cumulative dose calculated. The advantage of this approach is that the impact of turning the beam on at different points in the respiratory trace, and of different types of motion, can be evaluated using data from a single irradiation. We evaluated this technique by comparing with the results when we actually moved the phantom during irradiation. RapidArc plans were created to treat a 62 cc spherical tumor in a lung phantom (16 plans) and a 454 cc irregular tumor in an actual patient (five plans). The complexity of each field was controlled by adjusting the MU (312-966 MU). Each plan was delivered to a phantom, and a movie of the delivered dose taken using a 2D ion chamber array. Patient motion was modeled by shifting each dose frame according to a respiratory trace, starting the motion at different phases. The expected dose distribution was calculated by blurring the static dose distribution with the target motion. The dose error due to the interplay effect was then calculated by comparing the delivered dose with the expected dose distribution. Peak-to-peak motion of 0.5, 1.0, and 2.0 cm in the craniocaudal and right-left directions, with target periods of 3 and 5 s, were evaluated for each plan (252 different target motion/plan combinations). RESULTS The daily dose error due to the interplay effect was less than 10% for 98.4% of all pixels in the target for all plans investigated. The percentage of pixels for which the daily dose error could be larger than 5% increased with increasing plan complexity (field MU), but was less than 15% for all plans if the motion was 1 cm or less. For 2 cm motion, the dose error could be larger than 5% for 40% of pixels, but was less than 5% for more than 80% of pixels for MU < 550, and was less than 10% for 99% of all pixels. The interplay effect was smaller for 3 s periods than for 5 s periods. CONCLUSIONS The interplay between the motions of the LINAC and the target can result in an error in the delivered dose. This effect increases with plan complexity, and with target magnitude and period. It may average out after many fractions.


Medical Physics | 2014

Proton dose calculation on scatter-corrected CBCT image: Feasibility study for adaptive proton therapy

Yang-Kyun Park; G Sharp; J Phillips; B. Winey

PURPOSE To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. METHODS CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCTus) and a priori CT-based scatter correction (CBCTap). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCTus, while no HU change was applied to the CBCTap. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CTref) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCTap was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. RESULTS The uncorrected CBCT and CBCTus images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CTref, while the CBCTap images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCTap-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. CONCLUSIONS A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms.


Medical Physics | 2008

Evaluation of radiation dose delivered by cone beam CT and tomosynthesis employed for setup of external breast irradiation

B. Winey; Piotr Zygmanski; Yulia Lyatskaya

A systematic set of measurements is reported for evaluation of doses to critical organs resulting from cone-beam CT (CB-CT) and cone-beam tomosynthesis (CB-TS) as applied to breast setup for external beam irradiation. The specific focus of this study was on evaluation of doses from these modalities in a setting of volumetric breast imaging for target localization in radiotherapy treatments with the goal of minimizing radiation to healthy organs. Ion chamber measurements were performed in an anthropomorphic female thorax phantom at the center of each breast and lung and on the phantom surface at one anterior and two lateral locations (seven points total). The measurements were performed for three different isocenters located at the center of the phantom and at offset locations of the right and left breast. The dependence of the dose on angle selection for the CB-TS arc was also studied. For the most typical situation of centrally located CB-CT isocenter the measured doses ranged between 3 and 7 cGy, in good agreement with previous reports. Dose measurements were performed for a range of start/stop angles commonly used for CB-TS and the impact of direct and scatter dose on organs at risk was analyzed. All measured CB-TS doses were considerably lower than CB-CT doses, with greater decrease in dose for the organs outside of the beam (up to 98% decrease in dose). Remarkably, offsetting the isocenter towards the ipsilateral breast resulted on average to additional 46% dose reduction to organs at risk. The lowest doses to the contralateral breast and lung were less than 0.1 cGy when they were measured for the offset isocenter. The biggest reduction in dose was obtained by using CB-TS beams that completely avoid the critical organ. For points inside the CB-TS beam, the dose was reduced in a linear relation with distance from the center of the imaging arc. The data indicate that it is possible to reduce substantially radiation doses to the contralateral organs by proper selection of CB-TS angles and imaging field sizes. Our results provide the first systematic study on CB-TS doses from setup imaging for external breast irradiation and can be a useful resource for estimating anticipated radiation doses as a function of the conditions chosen for imaging breast setup.


International Journal of Radiation Oncology Biology Physics | 2016

Re-irradiation stereotactic body radiotherapy for spinal metastases: a multi-institutional outcome analysis.

Ahmed Hashmi; Matthias Guckenberger; Ron Kersh; Peter C. Gerszten; Frederick Mantel; I.S. Grills; John C. Flickinger; John H. Shin; Daniel K. Fahim; B. Winey; Kevin S. Oh; B.C. John Cho; D. Letourneau; Jason P. Sheehan; Arjun Sahgal

OBJECTIVE This study is a multi-institutional pooled analysis specific to imaging-based local control of spinal metastases in patients previously treated with conventional external beam radiation therapy (cEBRT) and then treated with re-irradiation stereotactic body radiotherapy (SBRT) to the spine as salvage therapy, the largest such study to date. METHODS The authors reviewed cases involving 215 patients with 247 spinal target volumes treated at 7 institutions. Overall survival was calculated on a patient basis, while local control was calculated based on the spinal target volume treated, both using the Kaplan-Meier method. Local control was defined as imaging-based progression within the SBRT target volume. Equivalent dose in 2-Gy fractions (EQD2) was calculated for the cEBRT and SBRT course using an α/β of 10 for tumor and 2 for both spinal cord and cauda equina. RESULTS The median total dose/number of fractions of the initial cEBRT was 30 Gy/10. The median SBRT total dose and number of fractions were 18 Gy and 1, respectively. Sixty percent of spinal target volumes were treated with single-fraction SBRT (median, 16.6 Gy and EQD2/10 = 36.8 Gy), and 40% with multiple-fraction SBRT (median 24 Gy in 3 fractions, EQD2/10 = 36 Gy). The median time interval from cEBRT to re-irradiation SBRT was 13.5 months, and the median duration of patient follow-up was 8.1 months. Kaplan-Meier estimates of 6- and 12-month overall survival rates were 64% and 48%, respectively; 13% of patients suffered a local failure, and the 6- and 12-month local control rates were 93% and 83%, respectively. Multivariate analysis identified Karnofsky Performance Status (KPS) < 70 as a significant prognostic factor for worse overall survival, and single-fraction SBRT as a significant predictive factor for better local control. There were no cases of radiation myelopathy, and the vertebral compression fracture rate was 4.5%. CONCLUSIONS Re-irradiation spine SBRT is effective in yielding imaging-based local control with a clinically acceptable safety profile. A randomized trial would be required to determine the optimal fractionation.


Medical Physics | 2016

Investigating deformable image registration and scatter correction for CBCT-based dose calculation in adaptive IMPT

Christopher Kurz; Florian Kamp; Yang-Kyun Park; Christoph Zöllner; Simon Rit; David C. Hansen; Mark Podesta; G Sharp; Minglun Li; Michael Reiner; Jan Hofmaier; Sebastian Neppl; Christian Thieke; Reinoud Nijhuis; Ute Ganswindt; Claus Belka; B. Winey; Katia Parodi; Guillaume Landry

PURPOSE This work aims at investigating intensity corrected cone-beam x-ray computed tomography (CBCT) images for accurate dose calculation in adaptive intensity modulated proton therapy (IMPT) for prostate and head and neck (H&N) cancer. A deformable image registration (DIR)-based method and a scatter correction approach using the image data obtained from DIR as prior are characterized and compared on the basis of the same clinical patient cohort for the first time. METHODS Planning CT (pCT) and daily CBCT data (reconstructed images and measured projections) of four H&N and four prostate cancer patients have been considered in this study. A previously validated Morphons algorithm was used for DIR of the planning CT to the current CBCT image, yielding a so-called virtual CT (vCT). For the first time, this approach was translated from H&N to prostate cancer cases in the scope of proton therapy. The warped pCT images were also used as prior for scatter correction of the CBCT projections for both tumor sites. Single field uniform dose and IMPT (only for H&N cases) treatment plans have been generated with a research version of a commercial planning system. Dose calculations on vCT and scatter corrected CBCT (CBCTcor) were compared by means of the proton range and a gamma-index analysis. For the H&N cases, an additional diagnostic replanning CT (rpCT) acquired within three days of the CBCT served as additional reference. For the prostate patients, a comprehensive contour comparison of CBCT and vCT, using a trained physicians delineation, was performed. RESULTS A high agreement of vCT and CBCTcor was found in terms of the proton range and gamma-index analysis. For all patients and indications between 95% and 100% of the proton dose profiles in beams eye view showed a range agreement of better than 3 mm. The pass rate in a (2%,2 mm) gamma-comparison was between 96% and 100%. For H&N patients, an equivalent agreement of vCT and CBCTcor to the reference rpCT was observed. However, for the prostate cases, an insufficient accuracy of the vCT contours retrieved from DIR was found, while the CBCTcor contours showed very high agreement to the contours delineated on the raw CBCT. CONCLUSIONS For H&N patients, no considerable differences of vCT and CBCTcor were found. For prostate cases, despite the high dosimetric agreement, the DIR yields incorrect contours, probably due to the more pronounced anatomical changes in the abdomen and the reduced soft-tissue contrast in the CBCT. Using the vCT as prior, these inaccuracies can be overcome and images suitable for accurate delineation and dose calculation in CBCT-based adaptive IMPT can be retrieved from scatter correction of the CBCT projections.


Practical radiation oncology | 2013

Practice patterns of photon and proton pediatric image guided radiation treatment: Results from an International Pediatric Research Consortium

S.R. Alcorn; Michael J. Chen; Line Claude; Karin Dieckmann; Ralph P. Ermoian; Eric C. Ford; Claude Malet; Shannon M. MacDonald; Alexey V. Nechesnyuk; Kristina Nilsson; Rosangela C. Villar; B. Winey; Erik Tryggestad; Stephanie A. Terezakis

PURPOSE Image guided radiation therapy (IGRT) has become common practice for both photon and proton radiation therapy, but there is little consensus regarding its application in the pediatric population. We evaluated clinical patterns of pediatric IGRT practice through an international pediatrics consortium comprised of institutions using either photon or proton radiation therapy. METHODS AND MATERIALS Seven international institutions with dedicated pediatric expertise completed a 53-item survey evaluating patterns of IGRT use in definitive radiation therapy for patients ≤21 years old. Two institutions use proton therapy for children and all others use IG photon therapy. Descriptive statistics including frequencies of IGRT use and means and standard deviations for planning target volume (PTV) margins by institution and treatment site were calculated. RESULTS Approximately 750 pediatric patients were treated annually across the 7 institutions. IGRT was used in tumors of the central nervous system (98%), abdomen or pelvis (73%), head and neck (100%), lung (83%), and liver (69%). Photon institutions used kV cone beam computed tomography and kV- and MV-based planar imaging for IGRT, and all proton institutions used kV-based planar imaging; 57% of photon institutions used a specialized pediatric protocol for IGRT that delivers lower dose than standard adult protocols. Immobilization techniques varied by treatment site and institution. IGRT was utilized daily in 45% and weekly in 35% of cases. The PTV margin with use of IGRT ranged from 2 cm to 1 cm across treatment sites and institution. CONCLUSIONS Use of IGRT in children was prevalent at all consortium institutions. There was treatment site-specific variability in IGRT use and technique across institutions, although practices varied less at proton facilities. Despite use of IGRT, there was no consensus of optimum PTV margin by treatment site. Given the desire to restrict any additional radiation exposure in children to instances where the exposure is associated with measureable benefit, prospective studies are warranted to optimize IGRT protocols by modality and treatment site.


Medical Physics | 2006

In vivo cancer diagnosis with optical spectroscopy and acoustically induced blood stasis using a murine MCa35 model

B. Winey; Vladimir Misic; Lydia Liao; Kevin J. Parker; Bruce M. Fenton; Yan Yu

Ultrasound-induced blood stasis has been observed for more than 30 years. Most of the literature has been focused on the health risks associated with this phenomenon and methods employed to prevent stasis from occurring during ultrasound imaging. To date, experimental observations have been either in vitro or invasive. The current work demonstrates ultrasound-induced blood stasis in murine normal leg muscle versus tumor-bearing legs, observed through noninvasive measurements of optical spectroscopy, and discusses possible diagnostic uses for this previously undesirable effect of ultrasound. We demonstrate that, using optical spectroscopy, effects of ultrasound can be used to differentiate tumor from normal leg muscle tissue in mice. Finally, we propose a novel diagnostic algorithm that quantitatively differentiates tumor from nontumor with maximum specificity 0.83, maximum sensitivity 0.79, and area under receiver-operating-characteristics curve 0.90.


Medical Physics | 2010

A fast double template convolution isocenter evaluation algorithm with subpixel accuracy

B. Winey; Greg Sharp; Marc R. Bussière

PURPOSE To design a fast Winston Lutz (fWL) algorithm for accurate analysis of radiation isocenter from images without edge detection or center of mass calculations. METHODS An algorithm has been developed to implement the Winston Lutz test for mechanical/ radiation isocenter agreement using an electronic portal imaging device (EPID). The algorithm detects the position of the radiation shadow of a tungsten ball within a stereotactic cone. The fWL algorithm employs a double convolution to independently find the position of the sphere and cone centers. Subpixel estimation is used to achieve high accuracy. Results of the algorithm were compared to (1) a human observer with template guidance and (2) an edge detection/center of mass (edCOM) algorithm. Testing was performed with high resolution (0.05 mm/px, film) and low resolution (0.78 mm/px, EPID) image sets. RESULTS Sphere and cone center relative positions were calculated with the fWL algorithm for high resolution test images with an accuracy of 0.002 +/- 0.061 mm compared to 0.042 +/- 0.294 mm for the human observer, and 0.003 +/- 0.038 mm for the edCOM algorithm. The fWL algorithm required 0.01 s per image compared to 5 s for the edCOM algorithm and 20 s for the human observer. For lower resolution images the fWL algorithm localized the centers with an accuracy of 0.083 +/- 0.12 mm compared to 0.03 +/- 0.5514 mm for the edCOM algorithm. CONCLUSIONS A fast (subsecond) subpixel algorithm has been developed that can accurately determine the center locations of the ball and cone in Winston Lutz test images without edge detection or COM calculations.

Collaboration


Dive into the B. Winey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L Court

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yan Yu

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lydia Liao

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge