Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Babette Gwynn is active.

Publication


Featured researches published by Babette Gwynn.


Nature | 2006

Mitoferrin is essential for erythroid iron assimilation

George C. Shaw; John J. Cope; Liangtao Li; Kenneth Corson; Candace Hersey; Gabriele E. Ackermann; Babette Gwynn; Amy J. Lambert; Rebecca A. Wingert; David Traver; Nikolaus S. Trede; Bruce Barut; Yi Zhou; Emmanuel Minet; Adriana Donovan; Alison Brownlie; Rena Balzan; Mitchell J. Weiss; Luanne L. Peters; Jerry Kaplan; Leonard I. Zon; Barry H. Paw

Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe–S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe–S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe–S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.


Cell | 1996

ANION EXCHANGER 1 (BAND 3) IS REQUIRED TO PREVENT ERYTHROCYTE MEMBRANE SURFACE LOSS BUT NOT TO FORM THE MEMBRANE SKELETON

Luanne L. Peters; Ramesh A. Shivdasani; Shih-Chun Liu; Manjit Hanspal; Kathryn M. John; Jennifer M. Gonzalez; Carlo Brugnara; Babette Gwynn; Narla Mohandas; Seth L. Alper; Stuart H. Orkin; Samuel E. Lux

The red blood cell (RBC) membrane protein AE1 provides high affinity binding sites for the membrane skeleton, a structure critical to RBC integrity. AE1 biosynthesis is postulated to be required for terminal erythropoiesis and membrane skeleton assembly. We used targeted mutagenesis to assess AE1 function in vivo. RBCs lacking AE1 spontaneously shed membrane vesicles and tubules, leading to severe spherocytosis and hemolysis, but the levels of the major skeleton components, the synthesis of spectrin in mutant erythroblasts, and skeletal architecture are normal or nearly normal. The results indicate that AE1 does not regulate RBC membrane skeleton assembly in vivo but is essential for membrane stability. We postulate that stabilization is achieved through AE1-lipid interactions and that loss of these interactions is a key pathogenic event in hereditary spherocytosis.


Nature Genetics | 2003

Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency.

Barry H. Paw; Alan J. Davidson; Yi Zhou; Rong Li; Stephen J. Pratt; Charles Lee; Nikolaus S. Trede; Alison Brownlie; Adriana Donovan; Eric C. Liao; James Ziai; Anna Drejer; Wen Guo; Carol H. Kim; Babette Gwynn; Luanne L. Peters; Marina N. Chernova; Seth L. Alper; A. Zapata; Sunitha N. Wickramasinghe; Matthew J. Lee; Samuel E. Lux; Andreas Fritz; John H. Postlethwait; Leonard I. Zon

Most eukaryotic cell types use a common program to regulate the process of cell division. During mitosis, successful partitioning of the genetic material depends on spatially coordinated chromosome movement and cell cleavage. Here we characterize a zebrafish mutant, retsina (ret), that exhibits an erythroid-specific defect in cell division with marked dyserythropoiesis similar to human congenital dyserythropoietic anemia. Erythroblasts from ret fish show binuclearity and undergo apoptosis due to a failure in the completion of chromosome segregation and cytokinesis. Through positional cloning, we show that the ret mutation is in a gene (slc4a1) encoding the anion exchanger 1 (also called band 3 and AE1), an erythroid-specific cytoskeletal protein. We further show an association between deficiency in Slc4a1 and mitotic defects in the mouse. Rescue experiments in ret zebrafish embryos expressing transgenic slc4a1 with a variety of mutations show that the requirement for band 3 in normal erythroid mitosis is mediated through its protein 4.1R–binding domains. Our report establishes an evolutionarily conserved role for band 3 in erythroid-specific cell division and illustrates the concept of cell-specific adaptation for mitosis.


Journal of Biological Chemistry | 2006

Absence of Erythroblast Macrophage Protein (Emp) Leads to Failure of Erythroblast Nuclear Extrusion

Shivani Soni; Shashi Bala; Babette Gwynn; Kenneth E. Sahr; Luanne L. Peters; Manjit Hanspal

In mammals, the functional unit for definitive erythropoiesis is the erythroblastic island, a multicellular structure composed of a central macrophage surrounded by developing erythroblasts. Erythroblast-macrophage interactions play a central role in the terminal maturation of erythroblasts, including enucleation. One possible mediator of this cell-cell interaction is the protein Emp (erythroblast macrophage protein). We used targeted gene inactivation to define the function of Emp during hematopoiesis. Emp null embryos die perinatally and show profound alterations in the hematopoietic system. A dramatic increase in the number of nucleated, immature erythrocytes is seen in the peripheral blood of Emp null fetuses. In the fetal liver virtually no erythroblastic islands are observed, and the number of F4/80-positive macrophages is substantially reduced. Those present lack cytoplasmic projections and are unable to interact with erythroblasts. Interestingly, wild type macrophages can bind Emp-deficient erythroblasts, but these erythroblasts do not extrude their nuclei, suggesting that Emp impacts enucleation in a cell autonomous fashion. Previous studies have implicated the actin cytoskeleton and its reorganization in both erythroblast enucleation as well as in macrophage development. We demonstrate that Emp associates with F-actin and that this interaction is important in the normal distribution of F-actin in both erythroblasts and macrophages. Thus, Emp appears to be required for erythroblast enucleation and in the development of the mature macrophages. The availability of an Emp null model provides a unique experimental system to study the enucleation process and to evaluate the function of macrophages in definitive erythropoiesis.


Journal of Clinical Investigation | 1999

Mild spherocytosis and altered red cell ion transport in protein 4.2–null mice

Luanne L. Peters; Hitesh K. Jindel; Babette Gwynn; Cathy Korsgren; Kathryn M. John; Samuel E. Lux; Narla Mohandas; Carl M. Cohen; Michael R. Cho; David E. Golan; Carlo Brugnara

Protein 4.2 is a major component of the red blood cell (RBC) membrane skeleton. We used targeted mutagenesis in embryonic stem (ES) cells to elucidate protein 4.2 functions in vivo. Protein 4. 2-null (4.2(-/-)) mice have mild hereditary spherocytosis (HS). Scanning electron microscopy and ektacytometry confirm loss of membrane surface in 4.2(-/-) RBCs. The membrane skeleton architecture is intact, and the spectrin and ankyrin content of 4. 2(-/-) RBCs are normal. Band 3 and band 3-mediated anion transport are decreased. Protein 4.2(-/-) RBCs show altered cation content (increased K+/decreased Na+)resulting in dehydration. The passive Na+ permeability and the activities of the Na-K-2Cl and K-Cl cotransporters, the Na/H exchanger, and the Gardos channel in 4. 2(-/-) RBCs are significantly increased. Protein 4.2(-/-) RBCs demonstrate an abnormal regulation of cation transport by cell volume. Cell shrinkage induces a greater activation of Na/H exchange and Na-K-2Cl cotransport in 4.2(-/-) RBCs compared with controls. The increased passive Na+ permeability of 4.2(-/-) RBCs is also dependent on cell shrinkage. We conclude that protein 4.2 is important in the maintenance of normal surface area in RBCs and for normal RBC cation transport.


Journal of Biological Chemistry | 2001

A New Spectrin, βIV, Has a Major Truncated Isoform That Associates with Promyelocytic Leukemia Protein Nuclear Bodies and the Nuclear Matrix

William T. Tse; Ju Tang; Ou Jin; Catherine Korsgren; Kathryn M. John; Andrew L. Kung; Babette Gwynn; Luanne L. Peters; Samuel E. Lux

We isolated cDNAs that encode a 77-kDa peptide similar to repeats 10–16 of β-spectrins. Its gene localizes to human chromosome 19q13.13-q13.2 and mouse chromosome 7, at 7.5 centimorgans. A 289-kDa isoform, similar to full-length β-spectrins, was partially assembled from sequences in the human genomic DNA data base and completely cloned and sequenced. RNA transcripts are seen predominantly in the brain, and Western analysis shows a major peptide that migrates as a 72-kDa band. This new gene, spectrin βIV, thus encodes a full-length minor isoform (SpβIVΣ1) and a truncated major isoform (SpβIVΣ5). Immunostaining of cells shows a micropunctate pattern in the cytoplasm and nucleus. In mesenchymal stem cells, the staining concentrates at nuclear dots that stain positively for the promyelocytic leukemia protein (PML). Expression of SpβIVΣ5 fused to green fluorescence protein in cells produces nuclear dots that include all PML bodies, which double in number in transfected cells. Deletion analysis shows that partial repeats 10 and 16 of SpβIVΣ5 are necessary for nuclear dot formation. Immunostaining of whole-mount nuclear matrices reveals diffuse positivity with accentuation at PML bodies. Spectrin βIV is the first β-spectrin associated with a subnuclear structure and may be part of a nuclear scaffold to which gene regulatory machinery binds.


Blood | 2008

Targeted deletion of α-adducin results in absent β- and γ-adducin, compensated hemolytic anemia, and lethal hydrocephalus in mice

Raymond F. Robledo; Steven L. Ciciotte; Babette Gwynn; Kenneth E. Sahr; Diana M. Gilligan; Narla Mohandas; Luanne L. Peters

In the red blood cell (RBC), adducin is present primarily as tetramers of alpha- and beta-subunits at spectrin-actin junctions, or junctional complexes. Mouse RBCs also contain small amounts of gamma-adducin. Platelets contain alpha- and gamma-adducin only. Adducin functions as a barbed-end actin capping protein to regulate actin filament length and recruits spectrin to the ends of actin filaments. To further define adducins role in vivo, we generated alpha-adducin knockout mice. alpha-Adducin is absent in all tissues examined in homozygous null mice. In RBCs, beta- and gamma-adducin are also absent, indicating that alpha-adducin is the limiting subunit in tetramer formation at the spectrin-actin junction. Similarly, gamma-adducin is absent in alpha-null platelets. alpha-Adducin-null mice display compensated hemolytic anemia with features characteristic of RBCs in hereditary spherocytosis (HS), including spherocytes with significant loss of surface area, decreased mean corpuscular volume (MCV), cell dehydration, and increased osmotic fragility. Platelets maintain their normal discoid shape, and bleeding times are normal. alpha-Adducin-null mice show growth retardation at birth and throughout adulthood. Approximately 50% develop lethal communicating hydrocephalus with striking dilation of the lateral, third, and fourth ventricles. These data indicate that adducin plays a role in RBC membrane stability and in cerebrospinal fluid homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Targeted deletion of βIII spectrin impairs synaptogenesis and generates ataxic and seizure phenotypes

Michael C. Stankewich; Babette Gwynn; Thomas Ardito; Lan Ji; Jung H. Kim; Raymond F. Robledo; Samuel E. Lux; Luanne L. Peters; Jon S. Morrow

The spectrin membrane skeleton controls the disposition of selected membrane channels, receptors, and transporters. In the brain βIII spectrin binds directly to the excitatory amino acid transporter (EAAT4), the glutamate receptor delta, and other proteins. Mutations in βIII spectrin link strongly to human spinocerebellar ataxia type 5 (SCA5), correlating with alterations in EAAT4. We have explored the mechanistic basis of this phenotype by targeted gene disruption of Spnb3. Mice lacking intact βIII spectrin develop normally. By 6 months they display a mild nonprogressive ataxia. By 1 year most Spnb3−/− animals develop a myoclonic seizure disorder with significant reductions of EAAT4, EAAT1, GluRδ, IP3R, and NCAM140. Other synaptic proteins are normal. The cerebellum displays increased dark Purkinje cells (PC), a thin molecular layer, fewer synapses, a loss of dendritic spines, and a 2-fold expansion of the PC dendrite diameter. Membrane and expanded Golgi profiles fill the PC dendrite and soma, and both regions accumulate EAAT4. Correlating with the seizure disorder are enhanced hippocampal levels of neuropeptide Y and EAAT3 and increased calpain proteolysis of αII spectrin. It appears that βIII spectrin disruption impairs synaptogenesis by disturbing the intracellular pathways selectively regulating protein trafficking to the synapse. The mislocalization of these proteins secondarily disrupts glutamate transport dynamics, leading to seizures, neuronal damage, and compensatory changes in EAAT3 and neuropeptide Y.


Molecular and Cellular Biology | 2011

Identification of Distal cis-Regulatory Elements at Mouse Mitoferrin Loci Using Zebrafish Transgenesis

Julio D. Amigo; Ming Yu; Marie Berengere Troadec; Babette Gwynn; Jeffrey D. Cooney; Amy J. Lambert; Neil C. Chi; Mitchell J. Weiss; Luanne L. Peters; Jerry Kaplan; Alan Cantor; Barry H. Paw

ABSTRACT Mitoferrin 1 (Mfrn1; Slc25a37) and mitoferrin 2 (Mfrn2; Slc25a28) function as essential mitochondrial iron importers for heme and Fe/S cluster biogenesis. A genetic deficiency of Mfrn1 results in a profound hypochromic anemia in vertebrate species. To map the cis-regulatory modules (CRMs) that control expression of the Mfrn genes, we utilized genome-wide chromatin immunoprecipitation (ChIP) datasets for the major erythroid transcription factor GATA-1. We identified the CRMs that faithfully drive the expression of Mfrn1 during blood and heart development and Mfrn2 ubiquitously. Through in vivo analyses of the Mfrn-CRMs in zebrafish and mouse, we demonstrate their functional and evolutionary conservation. Using knockdowns with morpholinos and cell sorting analysis in transgenic zebrafish embryos, we show that GATA-1 directly regulates the expression of Mfrn1. Mutagenesis of individual GATA-1 binding cis elements (GBE) demonstrated that at least two of the three GBE within this CRM are functionally required for GATA-mediated transcription of Mfrn1. Furthermore, ChIP assays demonstrate switching from GATA-2 to GATA-1 at these elements during erythroid maturation. Our results provide new insights into the genetic regulation of mitochondrial function and iron homeostasis and, more generally, illustrate the utility of genome-wide ChIP analysis combined with zebrafish transgenesis for identifying long-range transcriptional enhancers that regulate tissue development.


Journal of Clinical Investigation | 2014

TMEM14C is required for erythroid mitochondrial heme metabolism

Yvette Y. Yien; Raymond F. Robledo; Iman J. Schultz; Naoko Takahashi-Makise; Babette Gwynn; Daniel E. Bauer; Abhishek Dass; Gloria Yi; Liangtao Li; Gordon J. Hildick-Smith; Jeffrey D. Cooney; Eric A. Pierce; Kyla Mohler; Tamara A. Dailey; Non Miyata; Paul D. Kingsley; Caterina Garone; Shilpa M. Hattangadi; Hui Huang; Wen Chen; Ellen M. Keenan; Dhvanit I. Shah; Thorsten M. Schlaeger; Salvatore DiMauro; Stuart H. Orkin; Alan Cantor; James Palis; Carla M. Koehler; Harvey F. Lodish; Jerry Kaplan

The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.

Collaboration


Dive into the Babette Gwynn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry H. Paw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth E. Sahr

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George C. Shaw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jeffrey D. Cooney

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge