Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luanne L. Peters is active.

Publication


Featured researches published by Luanne L. Peters.


Nature | 2006

Mitoferrin is essential for erythroid iron assimilation

George C. Shaw; John J. Cope; Liangtao Li; Kenneth Corson; Candace Hersey; Gabriele E. Ackermann; Babette Gwynn; Amy J. Lambert; Rebecca A. Wingert; David Traver; Nikolaus S. Trede; Bruce Barut; Yi Zhou; Emmanuel Minet; Adriana Donovan; Alison Brownlie; Rena Balzan; Mitchell J. Weiss; Luanne L. Peters; Jerry Kaplan; Leonard I. Zon; Barry H. Paw

Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe–S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe–S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe–S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.


Cell | 1996

ANION EXCHANGER 1 (BAND 3) IS REQUIRED TO PREVENT ERYTHROCYTE MEMBRANE SURFACE LOSS BUT NOT TO FORM THE MEMBRANE SKELETON

Luanne L. Peters; Ramesh A. Shivdasani; Shih-Chun Liu; Manjit Hanspal; Kathryn M. John; Jennifer M. Gonzalez; Carlo Brugnara; Babette Gwynn; Narla Mohandas; Seth L. Alper; Stuart H. Orkin; Samuel E. Lux

The red blood cell (RBC) membrane protein AE1 provides high affinity binding sites for the membrane skeleton, a structure critical to RBC integrity. AE1 biosynthesis is postulated to be required for terminal erythropoiesis and membrane skeleton assembly. We used targeted mutagenesis to assess AE1 function in vivo. RBCs lacking AE1 spontaneously shed membrane vesicles and tubules, leading to severe spherocytosis and hemolysis, but the levels of the major skeleton components, the synthesis of spectrin in mutant erythroblasts, and skeletal architecture are normal or nearly normal. The results indicate that AE1 does not regulate RBC membrane skeleton assembly in vivo but is essential for membrane stability. We postulate that stabilization is achieved through AE1-lipid interactions and that loss of these interactions is a key pathogenic event in hereditary spherocytosis.


Nature Reviews Genetics | 2007

The mouse as a model for human biology: a resource guide for complex trait analysis

Luanne L. Peters; Raymond F. Robledo; Gary A. Churchill; Beverly Paigen; Karen L. Svenson

The mouse has been a powerful force in elucidating the genetic basis of human physiology and pathophysiology. From its beginnings as the model organism for cancer research and transplantation biology to the present, when dissection of the genetic basis of complex disease is at the forefront of genomics research, an enormous and remarkable mouse resource infrastructure has accumulated. This review summarizes those resources and provides practical guidelines for their use, particularly in the analysis of quantitative traits.


Aging Cell | 2009

Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels

Rong Yuan; Shirng-Wern Tsaih; Stefka B. Petkova; Caralina Marín de Evsikova; Shuqin Xing; Michael A. Marion; Molly A. Bogue; Kevin D. Mills; Luanne L. Peters; Clifford J. Rosen; John P. Sundberg; David E. Harrison; Gary A. Churchill; Beverly Paigen

To better characterize aging in mice, the Jackson Aging Center carried out a lifespan study of 31 genetically‐diverse inbred mouse strains housed in a specific pathogen‐free facility. Clinical assessments were carried out every 6 months, measuring multiple age‐related phenotypes including neuromuscular, kidney and heart function, body composition, bone density, hematology, hormonal levels, and immune system parameters. In a concurrent cross‐sectional study of the same 31 strains at 6, 12, and 20 months, more invasive measurements were carried out followed by necropsy to assess apoptosis, DNA repair, chromosome fragility, and histopathology. In this report, which is the initial paper of a series, the study design, median lifespans, and circulating insulin‐like growth factor 1 (IGF1) levels at 6, 12, and 18 months are described for the first cohort of 32 females and 32 males of each strain. Survival curves varied dramatically among strains with the median lifespans ranging from 251 to 964 days. Plasma IGF1 levels, which also varied considerably at each time point, showed an inverse correlation with a median lifespan at 6 months (R = −0.33, P = 0.01). This correlation became stronger if the short‐lived strains with a median lifespan < 600 days were removed from the analysis (R = −0.53, P < 0.01). These results support the hypothesis that the IGF1 pathway plays a key role in regulating longevity in mice and indicates that common genetic mechanisms may exist for regulating IGF1 levels and lifespan.


Nature Genetics | 2003

Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency.

Barry H. Paw; Alan J. Davidson; Yi Zhou; Rong Li; Stephen J. Pratt; Charles Lee; Nikolaus S. Trede; Alison Brownlie; Adriana Donovan; Eric C. Liao; James Ziai; Anna Drejer; Wen Guo; Carol H. Kim; Babette Gwynn; Luanne L. Peters; Marina N. Chernova; Seth L. Alper; A. Zapata; Sunitha N. Wickramasinghe; Matthew J. Lee; Samuel E. Lux; Andreas Fritz; John H. Postlethwait; Leonard I. Zon

Most eukaryotic cell types use a common program to regulate the process of cell division. During mitosis, successful partitioning of the genetic material depends on spatially coordinated chromosome movement and cell cleavage. Here we characterize a zebrafish mutant, retsina (ret), that exhibits an erythroid-specific defect in cell division with marked dyserythropoiesis similar to human congenital dyserythropoietic anemia. Erythroblasts from ret fish show binuclearity and undergo apoptosis due to a failure in the completion of chromosome segregation and cytokinesis. Through positional cloning, we show that the ret mutation is in a gene (slc4a1) encoding the anion exchanger 1 (also called band 3 and AE1), an erythroid-specific cytoskeletal protein. We further show an association between deficiency in Slc4a1 and mitotic defects in the mouse. Rescue experiments in ret zebrafish embryos expressing transgenic slc4a1 with a variety of mutations show that the requirement for band 3 in normal erythroid mitosis is mediated through its protein 4.1R–binding domains. Our report establishes an evolutionarily conserved role for band 3 in erythroid-specific cell division and illustrates the concept of cell-specific adaptation for mitosis.


Journal of Clinical Investigation | 1999

Protein 4.1R–deficient mice are viable but have erythroid membrane skeleton abnormalities

Zheng-Tao Shi; Veena Afzal; Barry S. Coller; Dipti Patel; Joel Anne Chasis; Marilyn Parra; Gloria Lee; Chris Paszty; Mary E. Stevens; Loren D. Walensky; Luanne L. Peters; Narla Mohandas; Edward M. Rubin; John G. Conboy

A diverse family of protein 4.1R isoforms is encoded by a complex gene on human chromosome 1. Although the prototypical 80-kDa 4.1R in mature erythrocytes is a key component of the erythroid membrane skeleton that regulates erythrocyte morphology and mechanical stability, little is known about 4.1R function in nucleated cells. Using gene knockout technology, we have generated mice with complete deficiency of all 4.1R protein isoforms. These 4.1R-null mice were viable, with moderate hemolytic anemia but no gross abnormalities. Erythrocytes from these mice exhibited abnormal morphology, lowered membrane stability, and reduced expression of other skeletal proteins including spectrin and ankyrin, suggesting that loss of 4. 1R compromises membrane skeleton assembly in erythroid progenitors. Platelet morphology and function were essentially normal, indicating that 4.1R deficiency may have less impact on other hematopoietic lineages. Nonerythroid 4.1R expression patterns, viewed using histochemical staining for lacZ reporter activity incorporated into the targeted gene, revealed focal expression in specific neurons in the brain and in select cells of other major organs, challenging the view that 4.1R expression is widespread among nonerythroid cells. The 4.1R knockout mice represent a valuable animal model for exploring 4.1R function in nonerythroid cells and for determining pathophysiological sequelae to 4.1R deficiency.


Journal of Biological Chemistry | 2006

Absence of Erythroblast Macrophage Protein (Emp) Leads to Failure of Erythroblast Nuclear Extrusion

Shivani Soni; Shashi Bala; Babette Gwynn; Kenneth E. Sahr; Luanne L. Peters; Manjit Hanspal

In mammals, the functional unit for definitive erythropoiesis is the erythroblastic island, a multicellular structure composed of a central macrophage surrounded by developing erythroblasts. Erythroblast-macrophage interactions play a central role in the terminal maturation of erythroblasts, including enucleation. One possible mediator of this cell-cell interaction is the protein Emp (erythroblast macrophage protein). We used targeted gene inactivation to define the function of Emp during hematopoiesis. Emp null embryos die perinatally and show profound alterations in the hematopoietic system. A dramatic increase in the number of nucleated, immature erythrocytes is seen in the peripheral blood of Emp null fetuses. In the fetal liver virtually no erythroblastic islands are observed, and the number of F4/80-positive macrophages is substantially reduced. Those present lack cytoplasmic projections and are unable to interact with erythroblasts. Interestingly, wild type macrophages can bind Emp-deficient erythroblasts, but these erythroblasts do not extrude their nuclei, suggesting that Emp impacts enucleation in a cell autonomous fashion. Previous studies have implicated the actin cytoskeleton and its reorganization in both erythroblast enucleation as well as in macrophage development. We demonstrate that Emp associates with F-actin and that this interaction is important in the normal distribution of F-actin in both erythroblasts and macrophages. Thus, Emp appears to be required for erythroblast enucleation and in the development of the mature macrophages. The availability of an Emp null model provides a unique experimental system to study the enucleation process and to evaluate the function of macrophages in definitive erythropoiesis.


The EMBO Journal | 2001

Transcriptional repression and developmental functions of the atypical vertebrate GATA protein TRPS1

Talat H. Malik; Sarah A. Shoichet; Peter Latham; Todd G. Kroll; Luanne L. Peters; Ramesh A. Shivdasani

Known vertebrate GATA proteins contain two zinc fingers and are required in development, whereas invertebrates express a class of essential proteins containing one GATA‐type zinc finger. We isolated the gene encoding TRPS1, a vertebrate protein with a single GATA‐type zinc finger. TRPS1 is highly conserved between Xenopus and mammals, and the human gene is implicated in dominantly inherited tricho‐rhino‐phalangeal (TRP) syndromes. TRPS1 is a nuclear protein that binds GATA sequences but fails to transactivate a GATA‐dependent reporter. Instead, TRPS1 potently and specifically represses transcriptional activation mediated by other GATA factors. Repression does not occur from competition for DNA binding and depends on a C‐terminal region related to repressive domains found in Ikaros proteins. During mouse development, TRPS1 expression is prominent in sites showing pathology in TRP syndromes, which are thought to result from TRPS1 haploinsufficiency. We show instead that truncating mutations identified in patients encode dominant inhibitors of wild‐type TRPS1 function, suggesting an alternative mechanism for the disease. TRPS1 is the first example of a GATA protein with intrinsic transcriptional repression activity and possibly a negative regulator of GATA‐dependent processes in vertebrate development.


Journal of The American Society of Nephrology | 2007

Distal Renal Tubular Acidosis in Mice Lacking the AE1 (Band3) Cl−/HCO3− Exchanger (slc4a1)

Paul A. Stehberger; Boris E. Shmukler; Alan K. Stuart-Tilley; Luanne L. Peters; Seth L. Alper; Carsten A. Wagner

Mutations in the human gene that encodes the AE1 Cl(-)/HCO(3)(-) exchanger (SLC4A1) cause autosomal recessive and dominant forms of distal renal tubular acidosis (dRTA). A mouse model that lacks AE1/slc4a1 (slc4a1-/-) exhibited dRTA characterized by spontaneous hyperchloremic metabolic acidosis with low net acid excretion and, inappropriately, alkaline urine without bicarbonaturia. Basolateral Cl(-)/HCO(3)(-) exchange activity in acid-secretory intercalated cells of isolated superfused slc4a1-/- medullary collecting duct was reduced, but alternate bicarbonate transport pathways were upregulated. Homozygous mice had nephrocalcinosis associated with hypercalciuria, hyperphosphaturia, and hypocitraturia. A severe urinary concentration defect in slc4a1-/- mice was accompanied by dysregulated expression and localization of the aquaporin-2 water channel. Mice that were heterozygous for the AE1-deficient allele had no apparent defect. Thus, the slc4a1-/- mouse is the first genetic model of complete dRTA and demonstrates that the AE1/slc4a1 Cl(-)/HCO(3)(-) exchanger is required for maintenance of normal acid-base homeostasis by distal renal regeneration of bicarbonate in the mouse as well as in humans.


Journal of Clinical Investigation | 1999

Mild spherocytosis and altered red cell ion transport in protein 4.2–null mice

Luanne L. Peters; Hitesh K. Jindel; Babette Gwynn; Cathy Korsgren; Kathryn M. John; Samuel E. Lux; Narla Mohandas; Carl M. Cohen; Michael R. Cho; David E. Golan; Carlo Brugnara

Protein 4.2 is a major component of the red blood cell (RBC) membrane skeleton. We used targeted mutagenesis in embryonic stem (ES) cells to elucidate protein 4.2 functions in vivo. Protein 4. 2-null (4.2(-/-)) mice have mild hereditary spherocytosis (HS). Scanning electron microscopy and ektacytometry confirm loss of membrane surface in 4.2(-/-) RBCs. The membrane skeleton architecture is intact, and the spectrin and ankyrin content of 4. 2(-/-) RBCs are normal. Band 3 and band 3-mediated anion transport are decreased. Protein 4.2(-/-) RBCs show altered cation content (increased K+/decreased Na+)resulting in dehydration. The passive Na+ permeability and the activities of the Na-K-2Cl and K-Cl cotransporters, the Na/H exchanger, and the Gardos channel in 4. 2(-/-) RBCs are significantly increased. Protein 4.2(-/-) RBCs demonstrate an abnormal regulation of cation transport by cell volume. Cell shrinkage induces a greater activation of Na/H exchange and Na-K-2Cl cotransport in 4.2(-/-) RBCs compared with controls. The increased passive Na+ permeability of 4.2(-/-) RBCs is also dependent on cell shrinkage. We conclude that protein 4.2 is important in the maintenance of normal surface area in RBCs and for normal RBC cation transport.

Collaboration


Dive into the Luanne L. Peters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Narla Mohandas

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gary A. Churchill

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Beverly Paigen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Connie S. Birkenmeier

Gulf Coast Regional Blood Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane E. Barker

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Karen L. Svenson

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge