Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bailiang Li is active.

Publication


Featured researches published by Bailiang Li.


Journal of Ovarian Research | 2014

Reduced expression of SOX7 in ovarian cancer: a novel tumor suppressor through the Wnt/β-catenin signaling pathway.

Huidi Liu; Zi-Qiao Yan; Bailiang Li; Si-Yuan Yin; Qiang Sun; Jun-Jie Kou; Dan Ye; Kelsey Ferns; Hong-Yu Liu; Shu-Lin Liu

BackgroundProducts of the SOX gene family play important roles in the life process. One of the members, SOX7, is associated with the development of a variety of cancers as a tumor suppression factor, but its relevance with ovarian cancer was unclear. In this study, we investigated the involvement of SOX7 in the progression and prognosis of epithelial ovarian cancer (EOC) and the involved mechanisms.MethodsExpression profiles in two independent microarray data sets were analyzed for SOX7 between malignant and normal tissues. The expression levels of SOX7 in EOC, borderline ovarian tumors and normal ovarian tissues were measured by immunohistochemistry. We also measured levels of COX2 and cyclin-D1 to examine their possible involvement in the same signal transduction pathway as SOX7.ResultsThe expression of SOX7 was significantly reduced in ovarian cancer tissues compared with normal controls, strongly indicating that SOX7 might be a negative regulator in the Wnt/β-catenin pathway in ovarian cancer. By immunohistochemistry staining, the protein expression of SOX7 showed a consistent trend with that of the gene expression microarray analysis. By contrast, the protein expression level of COX2 and cyclin-D1 increased as the tumor malignancy progressed, suggesting that SOX7 may function through the Wnt/β-catenin signaling pathway as a tumor suppressor. In comparison between the protein expression levels of SOX7 with pathological features of the cancer, we found that SOX7 was down-regulated mainly in serous cystadenocarcinoma and advanced stages of the cancers.ConclusionsThe expression of SOX7 correlates with tumor progression as a tumor suppressor, possibly through the Wnt/β-catenin signaling pathway in ovarian cancers, suggesting that SOX7 may be a promising prognostic marker.


Clinical Cancer Research | 2017

Unsupervised Clustering of Quantitative Image Phenotypes Reveals Breast Cancer Subtypes with Distinct Prognoses and Molecular Pathways

Jia Wu; Yi Cui; Xiaoli Sun; Guohong Cao; Bailiang Li; Debra M. Ikeda; Allison W. Kurian; Ruijiang Li

Purpose: To identify novel breast cancer subtypes by extracting quantitative imaging phenotypes of the tumor and surrounding parenchyma and to elucidate the underlying biologic underpinnings and evaluate the prognostic capacity for predicting recurrence-free survival (RFS). Experimental Design: We retrospectively analyzed dynamic contrast–enhanced MRI data of patients from a single-center discovery cohort (n = 60) and an independent multicenter validation cohort (n = 96). Quantitative image features were extracted to characterize tumor morphology, intratumor heterogeneity of contrast agent wash-in/wash-out patterns, and tumor-surrounding parenchyma enhancement. On the basis of these image features, we used unsupervised consensus clustering to identify robust imaging subtypes and evaluated their clinical and biologic relevance. We built a gene expression–based classifier of imaging subtypes and tested their prognostic significance in five additional cohorts with publically available gene expression data but without imaging data (n = 1,160). Results: Three distinct imaging subtypes, that is, homogeneous intratumoral enhancing, minimal parenchymal enhancing, and prominent parenchymal enhancing, were identified and validated. In the discovery cohort, imaging subtypes stratified patients with significantly different 5-year RFS rates of 79.6%, 65.2%, 52.5% (log-rank P = 0.025) and remained as an independent predictor after adjusting for clinicopathologic factors (HR, 2.79; P = 0.016). The prognostic value of imaging subtypes was further validated in five independent gene expression cohorts, with average 5-year RFS rates of 88.1%, 74.0%, 59.5% (log-rank P from <0.0001 to 0.008). Each imaging subtype was associated with specific dysregulated molecular pathways that can be therapeutically targeted. Conclusions: Imaging subtypes provide complimentary value to established histopathologic or molecular subtypes and may help stratify patients with breast cancer. Clin Cancer Res; 23(13); 3334–42. ©2017 AACR.


JAMA Oncology | 2017

Development and Validation of an Individualized Immune Prognostic Signature in Early-Stage Nonsquamous Non-Small Cell Lung Cancer.

Bailiang Li; Yi Cui; Maximilian Diehn; Ruijiang Li

Importance The prevalence of early-stage non–small cell lung cancer (NSCLC) is expected to increase with recent implementation of annual screening programs. Reliable prognostic biomarkers are needed to identify patients at a high risk for recurrence to guide adjuvant therapy. Objective To develop a robust, individualized immune signature that can estimate prognosis in patients with early-stage nonsquamous NSCLC. Design, Setting, and Participants This retrospective study analyzed the gene expression profiles of frozen tumor tissue samples from 19 public NSCLC cohorts, including 18 microarray data sets and 1 RNA-Seq data set for The Cancer Genome Atlas (TCGA) lung adenocarcinoma cohort. Only patients with nonsquamous NSCLC with clinical annotation were included. Samples were from 2414 patients with nonsquamous NSCLC, divided into a meta-training cohort (729 patients), meta-testing cohort (716 patients), and 3 independent validation cohorts (439, 323, and 207 patients). All patients underwent surgery with a negative surgical margin, received no adjuvant or neoadjuvant therapy, and had publicly available gene expression data and survival information. Data were collected from July 22 through September 8, 2016. Main Outcomes and Measures Overall survival. Results Of 2414 patients (1205 men [50%], 1111 women [46%], and 98 of unknown sex [4%]; median age [range], 64 [15-90] years), a prognostic immune signature of 25 gene pairs consisting of 40 unique genes was constructed using the meta-training data set. In the meta-testing and validation cohorts, the immune signature significantly stratified patients into high- vs low-risk groups in terms of overall survival across and within subpopulations with stage I, IA, IB, or II disease and remained as an independent prognostic factor in multivariate analyses (hazard ratio range, 1.72 [95% CI, 1.26-2.33; P < .001] to 2.36 [95% CI, 1.47-3.79; P < .001]) after adjusting for clinical and pathologic factors. Several biological processes, including chemotaxis, were enriched among genes in the immune signature. The percentage of neutrophil infiltration (5.6% vs 1.8%) and necrosis (4.6% vs 1.5%) was significantly higher in the high-risk immune group compared with the low-risk groups in TCGA data set (P < .003). The immune signature achieved a higher accuracy (mean concordance index [C-index], 0.64) than 2 commercialized multigene signatures (mean C-index, 0.53 and 0.61) for estimation of survival in comparable validation cohorts. When integrated with clinical characteristics such as age and stage, the composite clinical and immune signature showed improved prognostic accuracy in all validation data sets relative to molecular signatures alone (mean C-index, 0.70 vs 0.63) and another commercialized clinical-molecular signature (mean C-index, 0.68 vs 0.65). Conclusions and Relevance The proposed clinical-immune signature is a promising biomarker for estimating overall survival in nonsquamous NSCLC, including early-stage disease. Prospective studies are needed to test the clinical utility of the biomarker in individualized management of nonsquamous NSCLC.


Radiology | 2017

Heterogeneous Enhancement Patterns of Tumor-adjacent Parenchyma at MR Imaging Are Associated with Dysregulated Signaling Pathways and Poor Survival in Breast Cancer

Jia Wu; Bailiang Li; Xiaoli Sun; Guohong Cao; Daniel L. Rubin; Sandy Napel; Debra M. Ikeda; Allison W. Kurian; Ruijiang Li

Purpose To identify the molecular basis of quantitative imaging characteristics of tumor-adjacent parenchyma at dynamic contrast material-enhanced magnetic resonance (MR) imaging and to evaluate their prognostic value in breast cancer. Materials and Methods In this institutional review board-approved, HIPAA-compliant study, 10 quantitative imaging features depicting tumor-adjacent parenchymal enhancement patterns were extracted and screened for prognostic features in a discovery cohort of 60 patients. By using data from The Cancer Genome Atlas (TCGA), a radiogenomic map for the tumor-adjacent parenchymal tissue was created and molecular pathways associated with prognostic parenchymal imaging features were identified. Furthermore, a multigene signature of the parenchymal imaging feature was built in a training cohort (n = 126), and its prognostic relevance was evaluated in two independent cohorts (n = 879 and 159). Results One image feature measuring heterogeneity (ie, information measure of correlation) was significantly associated with prognosis (false-discovery rate < 0.1), and at a cutoff of 0.57 stratified patients into two groups with different recurrence-free survival rates (log-rank P = .024). The tumor necrosis factor signaling pathway was identified as the top enriched pathway (hypergeometric P < .0001) among genes associated with the image feature. A 73-gene signature based on the tumor profiles in TCGA achieved good association with the tumor-adjacent parenchymal image feature (R2 = 0.873), which stratified patients into groups regarding recurrence-free survival (log-rank P = .029) and overall survival (log-rank P = .042) in an independent TCGA cohort. The prognostic value was confirmed in another independent cohort (Gene Expression Omnibus GSE 1456), with log-rank P = .00058 for recurrence-free survival and log-rank P = .0026 for overall survival. Conclusion Heterogeneous enhancement patterns of tumor-adjacent parenchyma at MR imaging are associated with the tumor necrosis signaling pathway and poor survival in breast cancer.


PLOS ONE | 2013

Genes Dysregulated to Different Extent or Oppositely in Estrogen Receptor-Positive and Estrogen Receptor-Negative Breast Cancers

Xianxiao Zhou; Tongwei Shi; Bailiang Li; Yuannv Zhang; Xiaopei Shen; Hongdong Li; Guini Hong; Chunyang Liu; Zheng Guo

Background Directly comparing gene expression profiles of estrogen receptor-positive (ER+) and estrogen receptor-negative (ER−) breast cancers cannot determine whether differentially expressed genes between these two subtypes result from dysregulated expression in ER+ cancer or ER− cancer versus normal controls, and thus would miss critical information for elucidating the transcriptomic difference between the two subtypes. Principal Findings Using microarray datasets from TCGA, we classified the genes dysregulated in both ER+ and ER− cancers versus normal controls into two classes: (i) genes dysregulated in the same direction but to a different extent, and (ii) genes dysregulated to opposite directions, and then validated the two classes in RNA-sequencing datasets of independent cohorts. We showed that the genes dysregulated to a larger extent in ER+ cancers than in ER− cancers enriched in glycerophospholipid and polysaccharide metabolic processes, while the genes dysregulated to a larger extent in ER− cancers than in ER+ cancers enriched in cell proliferation. Phosphorylase kinase and enzymes of glycosylphosphatidylinositol (GPI) anchor biosynthesis were upregulated to a larger extent in ER+ cancers than in ER− cancers, whereas glycogen synthase and phospholipase A2 were downregulated to a larger extent in ER+ cancers than in ER− cancers. We also found that the genes oppositely dysregulated in the two subtypes significantly enriched with known cancer genes and tended to closely collaborate with the cancer genes. Furthermore, we showed the possibility that these oppositely dysregulated genes could contribute to carcinogenesis of ER+ and ER− cancers through rewiring different subpathways. Conclusions GPI-anchor biosynthesis and glycogenolysis were elevated and hydrolysis of phospholipids was depleted to a larger extent in ER+ cancers than in ER− cancers. Our findings indicate that the genes oppositely dysregulated in the two subtypes are potential cancer genes which could contribute to carcinogenesis of both ER+ and ER− cancers through rewiring different subpathways.


European Radiology | 2018

Prognostic value and molecular correlates of a CT image-based quantitative pleural contact index in early stage NSCLC

Juheon Lee; Yi Cui; Xiaoli Sun; Bailiang Li; Jia Wu; Dengwang Li; M.F. Gensheimer; Billy W. Loo; Maximilian Diehn; Ruijiang Li

PurposeTo evaluate the prognostic value and molecular basis of a CT-derived pleural contact index (PCI) in early stage non-small cell lung cancer (NSCLC).Experimental designWe retrospectively analysed seven NSCLC cohorts. A quantitative PCI was defined on CT as the length of tumour-pleura interface normalised by tumour diameter. We evaluated the prognostic value of PCI in a discovery cohort (n = 117) and tested in an external cohort (n = 88) of stage I NSCLC. Additionally, we identified the molecular correlates and built a gene expression-based surrogate of PCI using another cohort of 89 patients. To further evaluate the prognostic relevance, we used four datasets totalling 775 stage I patients with publically available gene expression data and linked survival information.ResultsAt a cutoff of 0.8, PCI stratified patients for overall survival in both imaging cohorts (log-rank p = 0.0076, 0.0304). Extracellular matrix (ECM) remodelling was enriched among genes associated with PCI (p = 0.0003). The genomic surrogate of PCI remained an independent predictor of overall survival in the gene expression cohorts (hazard ratio: 1.46, p = 0.0007) adjusting for age, gender, and tumour stage.ConclusionsCT-derived pleural contact index is associated with ECM remodelling and may serve as a noninvasive prognostic marker in early stage NSCLC.Key points• A quantitative pleural contact index (PCI) predicts survival in early stage NSCLC.• PCI is associated with extracellular matrix organisation and collagen catabolic process.• A multi-gene surrogate of PCI is an independent predictor of survival.• PCI can be used to noninvasively identify patients with poor prognosis.


PLOS ONE | 2014

Deconvolution of the gene expression profiles of valuable banked blood specimens for studying the prognostic values of altered peripheral immune cell proportions in cancer patients.

Lishuang Qi; Bailiang Li; Yu Dong; Hui Xu; Libin Chen; Hongwei Wang; Pengfei Li; Wenyuan Zhao; Yunyan Gu; Chenguang Wang; Zheng Guo

Background The altered composition of immune cells in peripheral blood has been reported to be associated with cancer patient survival. However, analysis of the composition of peripheral immune cells are often limited in retrospective survival studies employing banked blood specimens with long-term follow-up because the application of flow cytometry to such specimens is problematic. The aim of this study was to demonstrate the feasibility of deconvolving blood-based gene expression profiles (GEPs) to estimate the proportions of immune cells and determine their prognostic values for cancer patients. Methods and Results Here, using GEPs from peripheral blood mononuclear cells (PBMC) of 108 non-small cell lung cancer (NSCLC) patients, we deconvolved the immune cell proportions and analyzed their association with patient survival. Univariate Kaplan-Meier analysis showed that a low proportion of T cells was significantly associated with poor patient survival, as was the proportion of T helper cells; however, only the proportion of T cells was independently prognostic for patients by a multivariate Cox regression analysis (hazard ratio = 2.23; 95% CI, 1.01–4.92; p = .048). Considering that altered peripheral blood compositions can reflect altered immune responses within the tumor microenvironment, based on a tissue-based GEPs of NSCLC patients, we demonstrated a significant association between poor patient survival and the low level of antigen presentation, which play a critical role in T cell proliferation. Conclusions These results demonstrate that it is feasible to deconvolve GEPs from banked blood specimens for retrospective survival analysis of alterations of immune cell composition, and suggest the proportion of T cells in PBMC which might reflect the antigen presentation level within the tumor microenvironment can be a prognostic marker for NSCLC patients.


Clinical Cancer Research | 2018

Integrating Radiosensitivity and Immune Gene Signatures for Predicting Benefit of Radiotherapy in Breast Cancer

Yi Cui; Bailiang Li; Erqi L. Pollom; Kathleen C. Horst; Ruijiang Li

Purpose: Breast cancer is a heterogeneous disease and not all patients respond equally to adjuvant radiotherapy. Predictive biomarkers are needed to select patients who will benefit from the treatment and spare others the toxicity and burden of radiation. Experimental Design: We first trained and tested an intrinsic radiosensitivity gene signature to predict local recurrence after radiotherapy in three cohorts of 948 patients. Next, we developed an antigen processing and presentation-based immune signature by maximizing the treatment interaction effect in 129 patients. To test their predictive value, we matched patients treated with or without radiotherapy in an independent validation cohort for clinicopathologic factors including age, ER status, HER2 status, stage, hormone-therapy, chemotherapy, and surgery. Disease-specific survival (DSS) was the primary endpoint. Results: Our validation cohort consisted of 1,439 patients. After matching and stratification by the radiosensitivity signature, patients who received radiotherapy had better DSS than patients who did not in the radiation-sensitive group [hazard ratio (HR), 0.68; P = 0.059; n = 322], whereas a reverse trend was observed in the radiation-resistant group (HR, 1.53; P = 0.059; n = 202). Similarly, patients treated with radiotherapy had significantly better DSS in the immune-effective group (HR, 0.46; P = 0.0076; n = 180), with no difference in DSS in the immune-defective group (HR, 1.27; P = 0.16; n = 348). Both signatures were predictive of radiotherapy benefit (Pinteraction = 0.007 and 0.005). Integration of radiosensitivity and immune signatures further stratified patients into three groups with differential outcomes for those treated with or without radiotherapy (Pinteraction = 0.003). Conclusions: The proposed signatures have the potential to select patients who are most likely to benefit from radiotherapy. Clin Cancer Res; 24(19); 4754–62. ©2018 AACR.


JCO Clinical Cancer Informatics | 2017

Decentralized Learning Framework of Meta-Survival Analysis for Developing Robust Prognostic Signatures

Yi Cui; Bailiang Li; Ruijiang Li

Purpose A significant hurdle in developing reliable gene expression–based prognostic models has been the limited sample size, which can cause overfitting and false discovery. Combining data from multiple studies can enhance statistical power and reduce spurious findings, but how to address the biologic heterogeneity across different datasets remains a major challenge. Better meta-survival analysis approaches are needed. Material and Methods We presented a decentralized learning framework for meta-survival analysis without the need for data aggregation. Our method consisted of a series of proposals that together alleviated the influence of data heterogeneity and improved the performance of survival prediction. First, we transformed the gene expression profile of every sample into normalized percentile ranks to obtain platform-agnostic features. Second, we used Stouffer’s meta-z approach in combination with Harrell’s concordance index to prioritize and select genes to be included in the model. Third, we used survival discordance as a scale-independent model loss function. Instead of generating a merged dataset and training the model therein, we avoided comparing patients across datasets and individually evaluated the loss function on each dataset. Finally, we optimized the model by minimizing the joint loss function. Results Through comprehensive evaluation on 31 public microarray datasets containing 6,724 samples of several cancer types, we demonstrated that the proposed method has outperformed (1) single prognostic genes identified using conventional meta-analysis, (2) multigene signatures trained on single datasets, (3) multigene signatures trained on merged datasets as well as by other existing meta-analysis methods, and (4) clinically applicable, established multigene signatures. Conclusion The decentralized learning approach can be used to effectively perform meta-analysis of gene expression data and to develop robust multigene prognostic signatures.


Breast Cancer Research and Treatment | 2013

A relative ordering-based predictor for tamoxifen-treated estrogen receptor-positive breast cancer patients: multi-laboratory cohort validation

Xianxiao Zhou; Bailiang Li; Yuannv Zhang; Yunyan Gu; Beibei Chen; Tongwei Shi; Lu Ao; Pengfei Li; Shan Li; Chunyang Liu; Zheng Guo

Collaboration


Dive into the Bailiang Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Cui

Stanford University

View shared research outputs
Top Co-Authors

Avatar

Jia Wu

Stanford University

View shared research outputs
Top Co-Authors

Avatar

Shu-Lin Liu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gui-Rong Liu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Huidi Liu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyu Wang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Zheng Guo

Fujian Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge