Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baisong Lu is active.

Publication


Featured researches published by Baisong Lu.


Mammalian Genome | 2007

Generation of rat mutants using a coat color-tagged Sleeping Beauty transposon system

Baisong Lu; Aron M. Geurts; Christophe Poirier; Deborah C. Petit; Wilbur R. Harrison; Paul A. Overbeek; Colin E. Bishop

A significant barrier to exploiting the full potential of the rat as a biomedical model is the lack of tools to easily modify its germline. Here we show that a tyrosinase-tagged Sleeping Beauty transposon can be used as a simple, efficient method to generate rat mutants in vivo. By making two lines of transgenic rats, one carrying the transposon and another expressing the transposase in germ cells, we are able to obtain bigenic males in which transposition occurs in the germ cells. We show that transposition leads to the appearance of new coat colors in the offspring. Using such bigenic males, we obtained an average of 1.2 transpositions per gamete and identified 19 intragenic integration events among 96 transposition sites that were sequenced. In addition, gene trapping was confirmed and rats with evidence for transposon-induced dominant ocular anomalies were identified. These data suggest that the modified Sleeping Beauty transposon represents a powerful new tool for producing molecularly defined mutagenesis in the rat.


Biology of Reproduction | 2008

A Mutation in the Inner Mitochondrial Membrane Peptidase 2-Like Gene (Immp2l) Affects Mitochondrial Function and Impairs Fertility in Mice

Baisong Lu; Christophe Poirier; Tamás Gáspár; Christian Gratzke; Wilbur R. Harrison; David W. Busija; Martin M. Matzuk; Karl-Erik Andersson; Paul A. Overbeek; Colin E. Bishop

Abstract The mitochondrion is involved in energy generation, apoptosis regulation, and calcium homeostasis. Mutations in genes involved in mitochondrial processes often result in a severe phenotype or embryonic lethality, making the study of mitochondrial involvement in aging, neurodegeneration, or reproduction challenging. Using a transgenic insertional mutagenesis strategy, we generated a mouse mutant, Immp2lTg(Tyr)979Ove, with a mutation in the inner mitochondrial membrane peptidase 2-like (Immp2l) gene. The mutation affected the signal peptide sequence processing of mitochondrial proteins cytochrome c1 and glycerol phosphate dehydrogenase 2. The inefficient processing of mitochondrial membrane proteins perturbed mitochondrial function so that mitochondria from mutant mice manifested hyperpolarization, higher than normal superoxide ion generation, and higher levels of ATP. Homozygous Immp2lTg(Tyr)979Ove females were infertile due to defects in folliculogenesis and ovulation, whereas mutant males were severely subfertile due to erectile dysfunction. The data suggest that the high superoxide ion levels lead to a decrease in the bioavailability of nitric oxide and an increase in reactive oxygen species stress, which underlies these reproductive defects. The results provide a novel link between mitochondrial dysfunction and infertility and suggest that superoxide ion targeting agents may prove useful for treating infertility in a subpopulation of infertile patients.


Aging Cell | 2011

Mitochondrial peptidase IMMP2L mutation causes early onset of age-associated disorders and impairs adult stem cell self-renewal.

Sunil K. George; Yan Jiao; Colin E. Bishop; Baisong Lu

Mitochondrial reactive oxygen species (ROS) are proposed to play a central role in aging and age‐associated disorders, although direct in vivo evidence is lacking. We recently generated a mouse mutant with mutated inner mitochondrial membrane peptidase 2‐like (Immp2l) gene, which impairs the signal peptide sequence processing of mitochondrial proteins cytochrome c1 and glycerol phosphate dehydrogenase 2. The mitochondria from mutant mice generate elevated levels of superoxide ion and cause impaired fertility in both sexes. Here, we design experiments to examine the effects of excessive mitochondrial ROS generation on health span. We show that Immp2l mutation increases oxidative stress in multiple organs such as the brain and the kidney, although expression of superoxide dismutases in these tissues of the mutants is also increased. The mutants show multiple aging‐associated phenotypes, including wasting, sarcopenia, loss of subcutaneous fat, kyphosis, and ataxia, with female mutants showing earlier onset and more severe age‐associated disorders than male mutants. The loss of body weight and fat was unrelated to food intake. Adipose‐derived stromal cells (ADSC) from mutant mice showed impaired proliferation capability, formed significantly less and smaller colonies in colony formation assays, although they retained adipogenic differentiation capability in vitro. This functional impairment was accompanied by increased levels of oxidative stress. Our data showed that mitochondrial ROS is the driving force of accelerated aging and suggested that ROS damage to adult stem cells could be one of the mechanisms for age‐associated disorders.


FEBS Letters | 2005

Yeast two‐hybrid screens imply that GGNBP1, GGNBP2 and OAZ3 are potential interaction partners of testicular germ cell‐specific protein GGN1

Jin Zhang; Yan Wang; Yu Zhou; Zhiguo Cao; Peitang Huang; Baisong Lu

Gametogenetin (Ggn) is a testicular germ cell‐specific gene specifically expressed from late pachytene spermatocytes through round spermatids. The function of gametogenetin protein 1 (GGN1) remains unknown. Here, we used the yeast two‐hybrid approach to look for more GGN1 interacting proteins. We found that gametogenetin binding protein 1 (GGNBP1), gametogenetin binding protein 2 (GGNBP2) and ornithine decarboxylase antizyme 3 (OAZ3) were potential GGN1 interaction partners. We determined the regions mediating the interactions and further showed the interactions between the proteins in mammalian cells by colocalization and coimmunoprecipitation experiments. Our work suggested that GGN1, GGNBP1, GGNBP2 and OAZ3 could be involved in a common process associated with spermatogenesis.


PLOS ONE | 2012

Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) regulates axon integrity in the mouse embryo.

Amy N. Hicks; Diego Lorenzetti; Jonathan Gilley; Baisong Lu; Karl-Erik Andersson; Carol Miligan; Paul A. Overbeek; Ronald W. Oppenheim; Colin E. Bishop

Using transposon-mediated gene-trap mutagenesis, we have generated a novel mouse mutant termed Blad (Bloated Bladder). Homozygous mutant mice die perinatally showing a greatly distended bladder, underdeveloped diaphragm and a reduction in total skeletal muscle mass. Wild type and heterozygote mice appear normal. Using PCR, we identified a transposon insertion site in the first intron of Nmnat2 (Nicotinamide mononucleotide adenyltransferase 2). Nmnat2 is expressed predominantly in the brain and nervous system and has been linked to the survival of axons. Expression of this gene is undetectable in Nmnat2blad/blad mutants. Examination of the brains of E18.5 Nmnat2blad/blad mutant embryos did not reveal any obvious morphological changes. In contrast, E18.5 Nmnat2blad/blad homozygotes showed an approximate 60% reduction of spinal motoneurons in the lumbar region and a more than 80% reduction in the sensory neurons of the dorsal root ganglion (DRG). In addition, facial motoneuron numbers were severely reduced, and there was virtually a complete absence of axons in the hind limb. Our observations suggest that during embryogenesis, Nmnat2 plays an important role in axonal growth or maintenance. It appears that in the absence of Nmnat2, major target organs and tissues (e.g., muscle) are not functionally innervated resulting in perinatal lethality. In addition, neither Nmnat1 nor 3 can compensate for the loss of Nmnat2. Whilst there have been recent suggestions that Nmnat2 may be an endogenous modulator of axon integrity, this work represents the first in vivo study demonstrating that Nmnat2 is involved in axon development or survival in a mammal.


The Journal of Urology | 2010

Bladder Dysfunction in a New Mutant Mouse Model With Increased Superoxide—Lack of Nitric Oxide?

Roberto Soler; Claudius Füllhase; Baisong Lu; Colin E. Bishop; Karl-Erik Andersson

PURPOSE Nitric oxide mediates urethral smooth muscle relaxation and may also be involved in detrusor activity control. Mice with mutation in the Immp2l gene have high superoxide ion levels and a consequent decrease in the bioavailable amount of nitric oxide. We studied bladder function in this mouse model. MATERIAL AND METHODS Young male mutants at ages 4 to 6 months, old female mutants at age 18 months and healthy WT age matched controls were used. The detrusor contractile response to carbachol and electrical field stimulation was tested in isolated detrusor strips in organ baths. In vivo bladder function was evaluated by cystometry in conscious animals. RESULTS Young male mutants had significantly lower micturition and higher post-void residual volume than WT controls. They had pronounced voiding difficulty and strained when initiating micturition. Detrusor contractile responses to carbachol and electrical field stimulation were similar in mutant and WT mice. Old female mutant mice had lower bladder capacity and micturition volume, and higher micturition frequency and bladder-to-body weight ratio than WT controls. In the in vitro study detrusor strips from mutants showed a lower maximum response to carbachol. CONCLUSIONS Mice with mutation in the Immp2l gene have bladder dysfunction, mainly characterized by emptying abnormalities in young males and increased detrusor activity in old females. Detrusor function was preserved in young males and impaired in old females. These animals are a natural model of oxidative stress with low bioavailable nitric oxide. Thus, they are interesting tools in which to evaluate the role of these conditions on bladder dysfunction.


Drug Discovery Today | 2014

Small molecules and small molecule drugs in regenerative medicine

Baisong Lu; Anthony Atala

Regenerative medicine is an emerging, multidisciplinary science that aims to replace or regenerate human cells, tissues or organs, to restore or establish normal function. Research on small molecules and small molecule drugs in regenerative medicine is currently increasing. In this review, we discuss the potential applications of small molecules and small molecule drugs in regenerative medicine. These include enabling novel cell therapy approaches and augmentation of endogenous cells for tissue regeneration, facilitating the generation of target cells for cell therapy, improving the interactions between cells and biomatrices for tissue engineering, and enhancing endogenous stem cell function for tissue regeneration. We also discuss the potential challenges for small molecule drugs in regenerative medicine.


Molecular Biology of the Cell | 2012

Mex3c regulates insulin-like growth factor 1 (IGF1) expression and promotes postnatal growth

Yan Jiao; Colin E. Bishop; Baisong Lu

Mex3c is highly expressed in the testis, brain, and developing bone. Mex3c mutation causes postnatal growth retardation and background-dependent perinatal lethality, possibly through impairing the translation of insulin-like growth factor 1 mRNA in bone-forming cells.


Free Radical Biology and Medicine | 2012

Oxidative stress is involved in age-dependent spermatogenic damage of Immp2l mutant mice

Sunil K. George; Yan Jiao; Colin E. Bishop; Baisong Lu

Mitochondrial reactive oxygen species (ROS) have been implicated in spermatogenic damage, although direct in vivo evidence is lacking. We recently generated a mouse in which the inner mitochondrial membrane peptidase 2-like (Immp2l) gene is mutated. This Immp2l mutation impairs the processing of signal peptide sequences from mitochondrial cytochrome c₁ and glycerol phosphate dehydrogenase 2. The mitochondria from mutant mice generate elevated levels of superoxide ion, which causes age-dependent spermatogenic damage. Here we confirm age-dependent spermatogenic damage in a new cohort of mutants, which started at the age of 10.5 months. Compared with age-matched controls, protein carbonyl content was normal in testes of 2- to 5-month-old mutants, but significantly elevated in testes of 13-month-old mutants, indicating elevated oxidative stress in the testes at the time of impaired spermatogenesis. Testicular expression of superoxide dismutases was not different between control and mutant mice, whereas that of catalase was increased in young and old mutants. The expression of cytosolic glutathione peroxidase 4 (phospholipid hydroperoxidase) in testes was significantly reduced in 13-month-old mutants, concomitant with impaired spermatogenesis. Apoptosis of all testicular populations was increased in mutant mice with spermatogenic damage. The mitochondrial DNA (mtDNA) mutation rate in germ cells of mutant mice with impaired spermatogenesis was unchanged, excluding a major role of mtDNA mutation in ROS-mediated spermatogenic damage. Our data show that increased mitochondrial ROS are one of the driving forces for spermatogenic impairment.


Molecular and Cellular Biology | 2012

Mex3c Mutation Reduces Adiposity and Increases Energy Expenditure

Yan Jiao; Sunil K. George; Qingguo Zhao; Matthew W. Hulver; Susan M. Hutson; Colin E. Bishop; Baisong Lu

ABSTRACT The function of MEX3C, the mammalian homolog of Caenorhabditis elegans RNA-binding protein muscle excess 3 (MEX-3), was unknown until our recent report that MEX3C is necessary for normal postnatal growth and enhances the expression of local bone Igf1 expression. Here we report the pivotal role of Mex3c in energy balance regulation. Mex3c mutation caused leanness in both heterozygous and homozygous transgenic mice, as well as a more beneficial blood glucose and lipid profile in homozygous transgenic mice, in both sexes. Although transgenic mice showed normal food intake and fecal lipid excretion, they had increased energy expenditure independent of physical activity. Mutant mice had normal body temperature, Ucp1 expression in brown adipose tissue, and muscle and liver fatty acid oxidation. Mex3c is expressed in neurons and is detectable in the arcuate nucleus, the ventromedial nucleus, and the dorsomedial nucleus of the hypothalamus. Mex3c was not detected in NPY or POMC neurons but was detected in leptin-responsive neurons in the ventromedial nucleus. Mex3c and Leptin double mutant mice were growth retarded and obese and had blood profiles similar to those of ob/ob mice but showed none of the steatosis observed in ob/ob mice. Our data show that Mex3c is involved in energy balance regulation.

Collaboration


Dive into the Baisong Lu's collaboration.

Top Co-Authors

Avatar

Colin E. Bishop

Wake Forest Institute for Regenerative Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Atala

Wake Forest Institute for Regenerative Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Jiao

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Overbeek

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Roberto Soler

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunlian Liu

Wake Forest Institute for Regenerative Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge