Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bakela Nare is active.

Publication


Featured researches published by Bakela Nare.


PLOS Neglected Tropical Diseases | 2011

SCYX-7158, an Orally-Active Benzoxaborole for the Treatment of Stage 2 Human African Trypanosomiasis

Robert T. Jacobs; Bakela Nare; Stephen A. Wring; Matthew Orr; Daitao Chen; Jessica Sligar; Matthew Jenks; Robert A. Noe; Tana Bowling; Luke Mercer; Cindy Rewerts; Eric Gaukel; Jennifer Owens; Robin Parham; Ryan Randolph; Beth Beaudet; Cyrus J. Bacchi; Nigel Yarlett; Jacob J. Plattner; Yvonne Freund; Charles Z. Ding; Tsutomu Akama; Yong-Kang Zhang; Reto Brun; Marcel Kaiser; Ivan Scandale; Robert Don

Background Human African trypanosomiasis (HAT) is an important public health problem in sub-Saharan Africa, affecting hundreds of thousands of individuals. An urgent need exists for the discovery and development of new, safe, and effective drugs to treat HAT, as existing therapies suffer from poor safety profiles, difficult treatment regimens, limited effectiveness, and a high cost of goods. We have discovered and optimized a novel class of small-molecule boron-containing compounds, benzoxaboroles, to identify SCYX-7158 as an effective, safe and orally active treatment for HAT. Methodology/Principal Findings A drug discovery project employing integrated biological screening, medicinal chemistry and pharmacokinetic characterization identified SCYX-7158 as an optimized analog, as it is active in vitro against relevant strains of Trypanosoma brucei, including T. b. rhodesiense and T. b. gambiense, is efficacious in both stage 1 and stage 2 murine HAT models and has physicochemical and in vitro absorption, distribution, metabolism, elimination and toxicology (ADMET) properties consistent with the compound being orally available, metabolically stable and CNS permeable. In a murine stage 2 study, SCYX-7158 is effective orally at doses as low as 12.5 mg/kg (QD×7 days). In vivo pharmacokinetic characterization of SCYX-7158 demonstrates that the compound is highly bioavailable in rodents and non-human primates, has low intravenous plasma clearance and has a 24-h elimination half-life and a volume of distribution that indicate good tissue distribution. Most importantly, in rodents brain exposure of SCYX-7158 is high, with Cmax >10 µg/mL and AUC0–24 hr >100 µg*h/mL following a 25 mg/kg oral dose. Furthermore, SCYX-7158 readily distributes into cerebrospinal fluid to achieve therapeutically relevant concentrations in this compartment. Conclusions/Significance The biological and pharmacokinetic properties of SCYX-7158 suggest that this compound will be efficacious and safe to treat stage 2 HAT. SCYX-7158 has been selected to enter preclinical studies, with expected progression to phase 1 clinical trials in 2011.


Current Topics in Medicinal Chemistry | 2011

State of the art in African trypanosome drug discovery.

Robert Jacobs; Bakela Nare; Margaret A. Phillips

African sleeping sickness is endemic in sub-Saharan Africa where the WHO estimates that 60 million people are at risk for the disease. Human African trypanosomiasis (HAT) is 100% fatal if untreated and the current drug therapies have significant limitations due to toxicity and difficult treatment regimes. No new chemical agents have been approved since eflornithine in 1990. The pentamidine analog DB289, which was in late stage clinical trials for the treatment of early stage HAT recently failed due to toxicity issues. A new protocol for the treatment of late-stage T. brucei gambiense that uses combination nifurtomox/eflornithine (NECT) was recently shown to have better safety and efficacy than eflornithine alone, while being easier to administer. This breakthrough represents the only new therapy for HAT since the approval of eflornithine. A number of research programs are on going to exploit the unusual biochemical pathways in the parasite to identify new targets for target based drug discovery programs. HTS efforts are also underway to discover new chemical entities through whole organism screening approaches. A number of inhibitors with anti-trypanosomal activity have been identified by both approaches, but none of the programs are yet at the stage of identifying a preclinical candidate. This dire situation underscores the need for continued effort to identify new chemical agents for the treatment of HAT.


Antimicrobial Agents and Chemotherapy | 2010

Discovery of Novel Orally Bioavailable Oxaborole 6-Carboxamides That Demonstrate Cure in a Murine Model of Late-Stage Central Nervous System African Trypanosomiasis

Bakela Nare; Stephen A. Wring; Cyrus J. Bacchi; Beth Beaudet; Tana Bowling; Reto Brun; Daitao Chen; Charles Z. Ding; Yvonne Freund; Eric Gaukel; Ali Hussain; Kurt Jarnagin; Matthew Jenks; Marcel Kaiser; Luke Mercer; Elena Mejia; Andy Noe; Matt Orr; Robin Parham; Jacob J. Plattner; Ryan Randolph; Donna Rattendi; Cindy Rewerts; Jessica Sligar; Nigel Yarlett; Robert Don; Robert Jacobs

ABSTRACT We report the discovery of novel boron-containing molecules, exemplified by N-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-2-trifluoromethylbenzamide (AN3520) and 4-fluoro-N-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)-2-trifluoromethylbenzamide (SCYX-6759), as potent compounds against Trypanosoma brucei in vitro, including the two subspecies responsible for human disease T. b. rhodesiense and T. b. gambiense. These oxaborole carboxamides cured stage 1 (hemolymphatic) trypanosomiasis infection in mice when administered orally at 2.5 to 10 mg/kg of body weight for 4 consecutive days. In stage 2 disease (central nervous system [CNS] involvement), mice infected with T. b. brucei were cured when AN3520 or SCYX-6759 were administered intraperitoneally or orally (50 mg/kg) twice daily for 7 days. Oxaborole-treated animals did not exhibit gross signs of compound-related acute or subchronic toxicity. Metabolism and pharmacokinetic studies in several species, including nonhuman primates, demonstrate that both SCYX-6759 and AN3520 are low-clearance compounds. Both compounds were well absorbed following oral dosing in multiple species and also demonstrated the ability to cross the blood-brain barrier with no evidence of interaction with the P-glycoprotein transporter. Overall, SCYX-6759 demonstrated superior pharmacokinetics, and this was reflected in better efficacy against stage 2 disease in the mouse model. On the whole, oxaboroles demonstrate potent activity against all T. brucei subspecies, excellent physicochemical profiles, in vitro metabolic stability, a low potential for CYP450 inhibition, a lack of active efflux by the P-glycoprotein transporter, and high permeability. These properties strongly suggest that these novel chemical entities are suitable leads for the development of new and effective orally administered treatments for human African trypanosomiasis.


Journal of Medicinal Chemistry | 2012

Chalcone-benzoxaborole hybrid molecules as potent antitrypanosomal agents.

Zhitao Qiao; Qi Wang; Fenglong Zhang; Zhongli Wang; Tana Bowling; Bakela Nare; Robert Jacobs; Jiong Zhang; Dazhong Ding; Yangang Liu; Huchen Zhou

We report the novel chalcone-benzoxaborole hybrids and their structure-activity relationship against Trypanosoma brucei parasites. The 4-NH(2) derivative 29 and 3-OMe derivative 43 were found to have excellent potency. The synergistic 4-NH(2)-3-OMe compound 49 showed an IC(50) of 0.010 μg/mL and resulted in 100% survival and zero parasitemia in a murine infection model, which represents one of the most potent compounds discovered to date from the benzoxaborole class that inhibit T. brucei growth.


ACS Medicinal Chemistry Letters | 2010

Discovery of Novel Benzoxaborole-Based Potent Antitrypanosomal Agents

Dazhong Ding; Yaxue Zhao; Qingqing Meng; Dongsheng Xie; Bakela Nare; Daitao Chen; Cyrus J. Bacchi; Nigel Yarlett; Yong-Kang Zhang; Vincent Hernandez; Yi Xia; Yvonne Freund; Maha Hamadien Abdulla; Kean-Hooi Ang; Joseline Ratnam; James H. McKerrow; Robert Jacobs; Huchen Zhou; Jacob J. Plattner

We report the discovery of benzoxaborole antitrypanosomal agents and their structure-activity relationships on central linkage groups and different substitution patterns in the sulfur-linked series. The compounds showed in vitro growth inhibition IC50 values as low as 0.02 μg/mL and in vivo efficacy in acute murine infection models against Tryapnosoma brucei.


Journal of Medicinal Chemistry | 2011

Design, synthesis, and structure-activity relationship of Trypanosoma brucei leucyl-tRNA synthetase inhibitors as antitrypanosomal agents.

Dazhong Ding; Qingqing Meng; Guangwei Gao; Yaxue Zhao; Qing Wang; Bakela Nare; Robert Jacobs; Fernando Rock; M. R. K. Alley; Jacob J. Plattner; Guo-Qiang Chen; Dawei Li; Huchen Zhou

African trypanosomiasis, caused by the proto zoal pathogen Trypanosoma brucei (T. brucei), is one of the most neglected tropical diseases that are in great need of new drugs. We report the design and synthesis of T. brucei leucyl-tRNA synthetase (TbLeuRS) inhibitors and their structure--activity relationship. Benzoxaborole was used as the core structure and C(6) was modified to achieve improved affinity based on docking results that showed further binding space at this position. Indeed, compounds with C(7) substitutions showed diminished activity due to clash with the eukaryote specific I4ae helix while substitutions at C(6) gave enhanced affinity. TbLeuRS inhibitors with IC(50) as low as 1.6 μM were discovered, and the structure-activity relationship was discussed. The most potent enzyme inhibitors also showed excellent T. brucei parasite growth inhibition activity. This is the first time that TbLeuRS inhibitors are reported, and this study suggests that leucyl-tRNA synthetase (LeuRS) could be a potential target for antiparasitic drug development.


PLOS Neglected Tropical Diseases | 2011

2,4-Diaminopyrimidines as Potent Inhibitors of Trypanosoma brucei and Identification of Molecular Targets by a Chemical Proteomics Approach

Luke Mercer; Tana Bowling; Joe B Perales; Jennifer C. Freeman; Tien Nguyen; Cyrus J. Bacchi; Nigel Yarlett; Robert Don; Robert T. Jacobs; Bakela Nare

Background There is an urgent need to develop new, safe and effective treatments for human African trypanosomiasis (HAT) because current drugs have extremely poor safety profiles and are difficult to administer. Here we report the discovery of 2,4-diaminopyrimidines, exemplified by 4-[4-amino-5-(2-methoxy-benzoyl)-pyrimidin-2-ylamino]-piperidine-1-carboxylic acid phenylamide (SCYX-5070), as potent inhibitors of Trypanosoma brucei and the related trypanosomatid protozoans Leishmania spp. Methodology/Principal Findings In this work we show that loss of T. brucei viability following SCYX-5070 exposure was dependent on compound concentration and incubation time. Pulse incubation of T. brucei with SCYX-5070 demonstrates that a short period of exposure (10–12 hrs) is required to produce irreversible effects on survival or commit the parasites to death. SCYX-5070 cured an acute trypanosomiasis infection in mice without exhibiting signs of compound related acute or chronic toxicity. To identify the molecular target(s) responsible for the mechanism of action of 2,4-diaminopyrimidines against trypanosomatid protozoa, a representative analogue was immobilized on a solid matrix (sepharose) and used to isolate target proteins from parasite extracts. Mitogen-activated protein kinases (MAPKs) and cdc2-related kinases (CRKs) were identified as the major proteins specifically bound to the immobilized compound, suggesting their participation in the pharmacological effects of 2,4-diaminopyrimidines against trypanosomatid protozoan parasites. Conclusions/Significance Results show that 2,4-diaminopyrimidines have a good in vitro and in vivo pharmacological profile against trypanosomatid protozoans and that MAPKs and CRKs are potential molecular targets of these compounds. The 2,4-diminipyrimidines may serve as suitable leads for the development of novel treatments for HAT.


PLOS Neglected Tropical Diseases | 2015

Targeting Lysine Deacetylases (KDACs) in Parasites

Qi Wang; Bruce A. Rosa; Bakela Nare; Kerrie Powell; Sergio Valente; Dante Rotili; Antonello Mai; Garland R. Marshall; Makedonka Mitreva

Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in targeting Plasmodium to develop new anti-malarial treatments, and also pioneers experiments with these KDAC inhibitors as potential new anthelminthics. The selectivity observed begins to address the challenges of targeting specific parasitic diseases while limiting host toxicity.


International Journal for Parasitology-Drugs and Drug Resistance | 2012

Application of a resazurin-based high-throughput screening assay for the identification and progression of new treatments for human African trypanosomiasis

Tana Bowling; Luke Mercer; Robert Don; Robert T. Jacobs; Bakela Nare

Human African trypanosomiasis (HAT) is caused by the protozoan parasite Trypanosoma brucei, and the disease is fatal if untreated. There is an urgent need to develop new, safe and effective treatments for HAT because current drugs have extremely poor safety profiles and are difficult to administer. Here we report the development and application of a cell-based resazurin reduction assay for high throughput screening and identification of new inhibitors of T. b. brucei as starting points for the development of new treatments for human HAT. Active compounds identified in primary screening of ∼48,000 compounds representing ∼25 chemical classes were titrated to obtain IC50 values. Cytotoxicity against a mammalian cell line was determined to provide indications of parasite versus host cell selectivity. Examples from hit series that showed selectivity and evidence of preliminary SAR were re-synthesized to confirm trypanocidal activity prior to initiating hit-to-lead expansion efforts. Additional assays such as serum shift, time to kill and reversibility of compound effect were developed and applied to provide further criteria for advancing compounds through the hit-to-lead phase of the project. From this initial effort, six distinct chemical series were selected and hit-to-lead chemistry was initiated to synthesize several key analogs for evaluation of trypanocidal activity in the resazurin-reduction assay for parasite viability. From the hit-to-lead efforts, a series was identified that demonstrated efficacy in a mouse model for T. b. brucei infection and was progressed into the lead optimization stage. In summary, the present study demonstrates the successful and effective use of resazurin-reduction based assays as tools for primary and secondary screening of a new compound series to identify leads for the treatment of HAT.


Bioorganic & Medicinal Chemistry Letters | 2011

SAR of 2-amino and 2,4-diamino pyrimidines with in vivo efficacy against Trypanosoma brucei

Joe B Perales; Jennifer C. Freeman; Cyrus J. Bacchi; Tana Bowling; Robert Don; Eric Gaukel; Luke Mercer; Joseph A. Moore; Bakela Nare; Tien M. Nguyen; Robert A. Noe; Ryan Randolph; Cindy Rewerts; Stephen A. Wring; Nigel Yarlett; Robert T. Jacobs

A series of 2,4-diaminopyrimidines was investigated and compounds were found to have in vivo efficacy against Trypanosoma brucei in an acute mouse model. However, in vitro permeability data suggested the 2,4-diaminopyrimidenes would have poor permeability through the blood brain barrier. Consequently a series of 4-desamino analogs were synthesized and found to have improved in vitro permeability.

Collaboration


Dive into the Bakela Nare's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke Mercer

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huchen Zhou

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Dazhong Ding

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Qingqing Meng

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daitao Chen

Research Triangle Park

View shared research outputs
Researchain Logo
Decentralizing Knowledge