Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bakir Jeragh is active.

Publication


Featured researches published by Bakir Jeragh.


Journal of Coordination Chemistry | 2005

Synthesis, spectroscopic and the biological activity studies of thiosemicarbazones containing ferrocene and their copper(II) complexes

Bakir Jeragh; Ali El-Dissouky

Two Schiff bases, 1-acetylferrocene thiosemicarbazone (HL1) and 1,1′-diacetyl-ferrocene dithiosemicarbazone (H2L2) and their copper(II) complexes were prepared and characterized by elemental analysis, magnetic susceptibility, conductivity, and spectral (IR, UV–Vis, ESR) measurements The IR spectra showed that HL1 acts as neutral or monobasic bidentate ligand, coordinating to copper(II) through either thiono- or thiolo-sulphur and azomethine-N atoms, whereas H2L2 is a neutral or dibasic mononucleating or binucleating quadridentate ligand coordinating through the same atoms. Other spectral measurements indicate that complexes [(L1)2Cu], [(L2)Cu] and [(HL1)2Cu]X2, X = Cl, Br or ClO4 have square-planar geometry around copper(II) while [(HL1)CuX2] and [(H2L2)Cu2X4], X = Cl or Br, have distorted tetrahedral geometry. The biological activity studies of the complexes and the free ligands towards two gram positive and two gram negative bacteria and one fungal species have been studied and the potential is related to the nature and structure of the tested compounds.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2014

Spectroscopic and structural study of some 2,5-hexanedione bis(salicyloylhydrazone) complexes: crystal structures of its Ni(II) and Cu(II) complexes and N-(2,5-dimethyl-1H-pyrrol-1-yl)-2-hydroxy-benzamide.

Bakir Jeragh; Ahmed A. El-Asmy

The reaction between 2,5-hexanedione and salicylic acid hydrazide produced two compounds: 2,5-hexanedione bis(salicyloylhydrazone) [HDSH] (ethanol insoluble) and N-(2,5-dimethyl-1H-pyrrol-1-yl)-2-hydroxybenzamide [DPH] (ethanol soluble). HDSH formed complexes with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Pd(II) which are characterized by elemental analyses, spectra (IR, (1)H NMR, ESR and MS), thermal and magnetic measurements. The crystals of [Ni(HDSH-2H)(EtOH)(H2O)] and [Cu(HDSH-2H)] were solved having octahedral and square-planar geometries, respectively. The other complexes have the formulae [Co(HDSH-2H)(H2O)2], [Cu(HDSH-H)2], [Zn(HDSH-2H)(H2O)2], [Cd2(HDSH-4H)(H2O)4], [Cd2(HDSH-2H)(H2O)4Cl2]; [Hg(HDSH-2H)] and [Pd2(HDSH-4H)(H2O)4]. The obtained complexes are stable in air and non-hygroscopic. The magnetic moments and electronic spectra of the complexes provide different geometries. The ESR spectra support the mononuclear geometry for [Cu(HDSH-2H)] and [Cu(HDSH-H)2]. The thermal decomposition of the complexes revealed the coordinated waters as well as the end product which is in most cases the metal oxide. The crystal structure of N-(2,5-dimethyl-1H-pyrrol-1-yl)-2-hydroxybenzamide is solved by X-ray technique.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2014

Coordination of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) with 2,5-hexanedione bis(thiosemicarbazone), HBTS: Crystal structure of cis-[Pd(HBTS)]Cl2 and 1-(2,5-dimethyl-1H-pyrrol-yl)-thiourea

Bakir Jeragh; Ahmed A. El-Asmy

Metal complexes of Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pd2+ or Pt2+ with 2,5-hexanedione bis(thiosemicarbazone), HBTS; have been prepared and spectroscopically investigated. The empirical formulae of the complexes were suggested based on the elemental analysis. Single crystal of Pd(II) has been solved to be cis-form of square-planar geometry by the X-ray crystallography. 1H and 13C NMR spectra have been recorded for HBTS, Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) complexes, in DMSO-d6, showing the mode of chelation. The ligand acts as a neutral or a binegative tetradentate (N2S2) or neutral bidentate on the basis of FT-IR. The magnetic moments and electronic spectra provide information about the geometry of the complexes which supported by calculating the ligand field parameters for the Co(II) and Fe(III) complexes. The Ni(II) complex has subnormal magnetic moment (0.71 BM) indicative of a mixed stereochemistry of square-planar and tetrahedral structure. [Cu(HBTS-2H)] measured 0.93 BM indicating high interaction between the copper centers. The ligand may be ordered at the top of the spectrochemical series which giving high ligand field splitting energy (10 Dq=17,900 cm(-1) for Co2+ complex). The mass spectra of some complexes proved their stable chemical formulae while the TGA depicts the degradation steps and the final residue. In evaporating the mother liquor during the preparation of HBTS, new compound is obtained naming 1-(2,5-dimethyl-1H-pyrrol-yl)thiourea and its crystal was solved.


Transition Metal Chemistry | 2004

Synthesis and spectroscopic studies of oxovanadium(IV) and dichlorovanadium(IV) complexes of p-X-phenyl-2-picolylketones

Bakir Jeragh; Ali El-Dissouky

A new series of oxovanadium(IV) complexes formulated as [(HL)2VO]n·nSO4 (a), [(HL)VO(SO4)]2 (b), and [L2VO] (c), where HL=phenyl-2-picolylketone and its para-substituted derivatives have been synthesized and characterized. The i.r. data suggest that the ligands are neutral bidentate in classes (a) and (b) and uninegative bidentate in (c), coordinated to the vanadyl ion via the pyridine-N and keto- or enolato-O atoms. Complexes of class (a) showed mechanochromism upon grinding. Magnetic, u.v./vis. and e.s.r. data suggest that all the complexes have a square pyramidal structure with an unpaired electron in the dxy orbital in the solid and in solutions. Deoxygenation of the oxovanadium complexes gave the corresponding dichlorovanadium(IV) derivatives. Elemental analysis, magnetic and spectral studies indicated that the dichlorovanadium(IV) complexes are associated with a distorted trans-octahedral ligand field.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2014

Structure and spectroscopic studies of homo-and heterometallic complexes of adipic acid dihydrazide.

Bakir Jeragh; Ahmed A. El-Asmy

A single crystal of adipic acid dihydrazide, ADH, has been analyzed. Its reaction with Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), Ag(+), Pd(2+) and/or Pt(2+) gave homometallic and heterometallic complexes which are characterized by partial elemental analysis, spectra (MS, ESR, (1)H NMR, electronic; IR), thermal analysis and magnetic measurements. Some complexes: Zn(0.73)Cu(ADH)Cl4·H2O; Zn(0.71)Hg(0.36)(ADH)Cl4·H2O; Zn(0.65)Cd(0.46)(ADH)Cl4·½H2O; Zn(0.75)Co(0.41)(ADH-2H)Cl2·3H2O; Cd0.85Co0.43(ADH)Cl4·½EtOH were isolated having nonstiochiometric metal ratios. The ligand behaves as a neutral (bidentate or tetradentate) and/or binegative tetradentate. A square-pyramid, square-planar and tetrahedral structures were proposed for the homo Co(II), Cu(II) and Ni(II) complexes, respectively. A similar and different stereochemistry around each metal ion (tetrahedral+tetrahedral; tetrahedral+square-planar; tetrahedral+tetrahedral and/or tetrahedral+octahedral) was suggested for the heterometallic complexes. Some complexes were found highly stable with stability point >240 °C; the most stable is [HgNi(ADH-2H)Cl2]. The presence of diamagnetic atom (Zn, Cd or Hg) reduces the magnetic moments and gave anomalous moments. The degradation steps and the hydrated complexes are confirmed through the TGA study. The order of covalency of [Zn(0.73)Cu(ADH)Cl4]·H2O, [CdCu(ADH)Cl4]·H2O and [HgCu(ADH-2H)Cl2] matches with the size of the second metal (Zn complex>Cd complex>Hg complex). Some heterometallic complexes were found nonstoichiometric through the analysis of their metal content and supported by TGA.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015

Crystal structure, complexation, spectroscopic characterization and antimicrobial evaluation of 3,4-dihydroxybenzylidene isonicotinyl-hydrazone.

Bakir Jeragh; Mayada Samir Ali; Ahmed A. El-Asmy

A single crystal of 3,4-dihydroxybenzylidene isonicotinylhydrazone, HBINH, has been grown and solved by X-ray crystallography. The VO(2+), Zr(4+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pd(2+) complexes of HBINH have been prepared and spectroscopically characterized. The data confirmed the formulae [Co(HBINH)(H2O)Cl]Cl·H2O, [Pd(HBINH)Cl2], [Zn(HBINH)2Cl2], [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)], [Ni2(HBINH)(H2O)6Cl2]Cl2, [Cu2(HBINH-3H)(H2O)2(OAc)]·3H2O, [Zr2(HBINH-3H)Cl4]Cl, [Hg2(HBINH)Cl4] and the dimer {[Cu(HBINH)Cl]Cl}2. Most of the complexes have intense colors and high melting points and some are electrolytes in DMSO solution. The ligand behaves as a neutral bidentate in the Co(II), Cu(II), Pd(II), Zn(II) and Cd(II) complexes; dibasic tetradentate in [Ni2(HBINH)(H2O)6Cl2]Cl2 and tribasic tetradentate in [Cu2(HBINH-3H)(OAc)]·5H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Zr2(HBINH-3H)Cl4]Cl by the loss of 3H(+) due to the deprotonation of the two hydroxyl groups and the enolization of the amide (OCNH) group. A tetrahedral geometry was proposed for the Co(II), Cu(II), Zn(II) and Hg(II) complexes; square-planar for the Pd(II) complex; square-pyramid for the VO(2+) complex and octahedral for the Ni(II) and Cd(II) complexes. The complexes [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Cu2(HBINH-3H)-(H2O)2(OAc)]·3H2O have activities against Bacillus sp. M3010, Candida albicans, Escherichia coli, Staphylococcus aureus and Slamonella sp. PA393.


Journal of Coordination Chemistry | 2010

Synthesis, characterization, and biological activity studies on (E)-N′-[2-hydroxy-1,2-di(pyridin-2-yl)ethylidine]aroyl hydrazides and their copper(II) complexes

Reem Karbouj; Ali El-Dissouky; Bakir Jeragh; Esmaeil Al-Saleh

The reaction of copper(II) salts with (E)-N-(2-hydroxy-1,2-di(pyridin-2-yl)ethylidene)aroyl hydrazide (H2L1, H2L2, H3L3) or (E)-N-(2-hydroxy-1,2-di(pyridin-2-yl)ethylidene) isonicotinohydrazide (H2L4) afforded the complexes [(L)Cu(H2O)3], [(H2L)Cu(OAc)(H2O)], [(HL)Cu(OAc)] n , [(H2L)Cu(H2O)](ClO4)2 and [(H2L)Cu(OAc)(H2O)], where n = 1 or 2 and L is the dinegative ion of the ligands. The ligands and their complexes are characterized by elemental analyses, spectral (IR, NMR, electronic, and ESR) and magnetic studies. The FT-IR indicates that the ligands are neutral or anionic polydentate. The number of the coordinating centers depends on the nature of the metal used and the reaction conditions. The room temperature magnetic moment values, electronic spectra and ESR data indicate square planar, trigonal bipyramidal, square pyramidal, and distorted octahedral ligand fields around copper(II). Thermal decomposition of the complexes was monitored by TG and DTG under N2 and the thermal decomposition mechanisms are given. The compounds were screened for their antimicrobial activities on some Gram-positive and Gram-negative bacterial species. The free ligands are inactive against all studied bacteria. The complexes have variable activity with the most active [(H2L)Cu(H2O)](ClO4)2, where H2L is H2L1 or H2L2. The minimum inhibition concentrations for these two complexes were determined. These biological activity results are related to the structures of the compounds.


Modern Chemistry & Applications | 2014

Biosorption of Pb2+ from Natural Water using Date Pits: A Green Chemistry Approach

Salem E Samra; Bakir Jeragh; Ahmed M EL-Nokrashy; Ahmed A. El-Asmy

Removal of Pb2+ ions from aqueous solutions by adsorption onto Date Pits (DP) has been investigated. The date pits (sorbent) may represent an environmental problem. The characteristic parameters (solution pH, initial concentration of Pb2+, sorbent dose, shaking time and temperature) influencing the adsorption process have been examined. pH=7 is found the best one having high floatability of 6 g l-1 dose of DP. The Freundlich and Langmuir were applied. The change in Gibbs free energy change (ΔGo), enthalpy (ΔHo) and entropy (ΔSo) were also calculated. Under the optimum experimental conditions employed, the removal of ~95% of Pb2+ was attained. The procedure was successfully applied to remove Pb2+ from natural water samples. The SEM image of DP before and after lead adsorption shows complete adsorption.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015

Chelation, spectroscopic characterization, biological activity and crystal structure of 2,3-butanedione isonicotinylhydrazone: Determination of Zr 4+ after flotation separation

Othman A. Al-Fulaij; Bakir Jeragh; A.E.M. El-Sayed; M.M. El-Defrawy; Ahmed A. El-Asmy

New metal complexes of Co(II), Ni(II) Cu(II), Zn(II), Cd(II), Pd(II) and Hg(II) with 2,3-butanedione isonicotinylhydrazone [BINH] have been prepared and investigated. Single crystal for BINH is grown and solved as orthorhombic with P 21 21 2 space group. The formula of the ligand was assigned based on the elemental analysis, mass spectra and conductivity measurements. The complexes assigned the formulae [M(BINH-H)Cl]⋅nH2O (MCo(II), Ni(II), Cu(II), Zn(II); n=0 or 1); [Hg(BINH-H)(H2O)2Cl]; [Cd(BINH)Cl2]⋅2H2O and [Pd(BINH)Cl2]⋅H2O. All complexes are nonelectrolytes. BINH acts as a tridentate ligand in [M(BINH-H)Cl]⋅nH2O and [Hg(BINH-H)(H2O)2Cl] coordinating through COketonic, COamedic and CNhy and as a neutral bidentate through COketonic and CNhy in [Cd(BINH)Cl2]⋅2H2O and [Pd(BINH)Cl2]⋅H2O; the pyridine nitrogen has no rule in coordination. The data are supported by NMR ((1)H and (13)C) spectra. The magnetic moments and electronic spectra provide a tetrahedral structure for the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes; square-planar for the Pd(II) complex and octahedral for the Hg(II) complex. The TGA of the complexes depicted the outer and inner water molecules as well as the final residue. The cobalt and cadmium complexes ended with the metal while the Cu(II), Zn(II) and Pd(II) complexes ended with complex species. [Hg(BINH-H)(H2O)2Cl] has no residue. The ligand is inactive against all tested organisms except for Bacillus thuringiensis. The Hg(II) complex is found more active than the other complexes. The flotation technique is found applicable for the separation of micro amount (10ppm) of Zr(4+) using 10ppm of BINH and 1×10(-5)molL(-1) of oleic acid at pH 6 with efficiency of 98% with no interferences.


Chemistry Central Journal | 2015

Spectral, thermal, molecular modeling and biological studies on mono- and binuclear complexes derived from oxalo bis(2,3-butanedionehydrazone)

Ahmed A. El-Asmy; Bakir Jeragh; Mayada Samir Ali

AbstractBackgroundHydrazones and their metal complexes were heavily studied due to their pharmacological applications such as antimicrobial, anticonvulsant analgesic, anti-inflammatory and anti-cancer agents. This work aims to synthesize and characterize novel complexes of VO2+, Co2+, Ni2+, Cu2+, Zn2+, Zr4+and Pd2+ ions with oxalo bis(2,3-butanedione-hydrazone). Single crystals of the ligand have been grown and analyzed.ResultsOxalo bis(2,3-butanedionehydrazone) [OBH] has a monoclinic crystal with P 1 21/n 1 space group. The VO2+, Co2+, Ni2+, Cu2+, Zn2+, Zr4+ and Pd2+ complexes have the formulas: [VO(OBH–H)2]·H2O, [Co(OBH)2Cl]Cl·½EtOH, [Ni2(OBH)Cl4]·H2O·EtOH, [Cu(OBH)2Cl2]·2H2O, [Zn(OBH–H)2], [Zr(OBH)Cl4]·2H2O, and [Pd2(OBH)(H2O)2Cl4]·2H2O. All complexes are nonelectrolytes except [Co(OBH)2Cl]Cl·½EtOH. OBH ligates as: neutral tetradentate (NNOO) in the Ni2+ and Pd2+ complexes; neutral bidentate (OO) in [Co(OBH)2Cl]Cl·½EtOH, [Zr(OBH)Cl4]·2H2O and [Cu(OBH)2Cl2]·2H2O and monobasic bidentate (OO) in the Zn2+ and VO2+ complexes. The NMR (1H and 13C) spectra support these data. The results proved a tetrahedral for the Zn2+ complex; square-planar for Pd2+; mixed stereochemistry for Ni2+; square-pyramid for Co2+ and VO2+ and octahedral for Cu2+ and Zr4+ complexes. The TGA revealed the outer and inner solvents as well as the residual part. The molecular modeling of [Ni2(OBH)Cl4]·H2O·EtOH and [Co(OBH)2Cl]Cl·½EtOH are drawn and their molecular parameters proved that the presence of two metals stabilized the complex more than the mono metal. The complexes have variable activities against some bacteria and fungi. [Zr(OBH)Cl4]·2H2O has the highest activity. [Co(OBH)2Cl]Cl·½EtOH has more activity against Fusarium.ConclusionOxalo bis(2,3-butanedionehydrazone) structure was proved by X-ray crystallography. It coordinates with some transition metal ions as neutral bidentate; mononegative bidentate and neutral tetradentate. The complexes have tetrahedral, square-planar and/or octahedral structures. The VO2+ and Co2+ complexes have square-pyramid structure. [Cu(OBH)2Cl2]·2H2O and [Ni2(OBH)Cl4]·H2O·EtOH decomposed to their oxides while [VO(OBH–H)2]·H2O to vanadium. The energies obtained from molecular modeling calculation for [Ni2(OBH)Cl4]·H2O·EtOH are less than those for [Co(OBH)2Cl]Cl·½EtOH indicating the two metals stabilized the complex more than mono metal. The Co(II) complex is polar molecule while the Ni(II) is non-polar.Graphical abstract

Collaboration


Dive into the Bakir Jeragh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge