Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Balasubramanyam Karanam is active.

Publication


Featured researches published by Balasubramanyam Karanam.


Journal of Virology | 2007

A Protective and Broadly Cross-Neutralizing Epitope of Human Papillomavirus L2

Ratish Gambhira; Balasubramanyam Karanam; Subhashini Jagu; Jeffrey N. Roberts; Christopher B. Buck; Ioannis Bossis; Hannah H. Alphs; Timothy D. Culp; Neil D. Christensen; Richard B. S. Roden

ABSTRACT We generated a monoclonal antibody, RG-1, that binds to highly conserved L2 residues 17 to 36 and neutralizes human papillomavirus 16 (HPV16) and HPV18. Passive immunotherapy with RG-1 was protective in mice. Antiserum to the HPV16 L2 peptide comprising residues 17 to 36 (peptide 17-36) neutralized pseudoviruses HPV5, HPV6, HPV16, HPV 18, HPV31, HPV 45, HPV 52, HPV 58, bovine papillomavirus 1, and HPV11 native virions. Depletion of HPV16 L2 peptide 17-36-reactive antibodies from cross-neutralizing rabbit and human L2-specific sera abolished cross-neutralization and drastically reduced neutralization of the cognate type. This cross-neutralization of diverse HPVs associated with cervical cancer, genital warts, and epidermodysplasia verruciformis suggests the possibility of a broadly protective, peptide-based vaccine.


Journal of the National Cancer Institute | 2009

Concatenated Multitype L2 Fusion Proteins as Candidate Prophylactic Pan-Human Papillomavirus Vaccines

Subhashini Jagu; Balasubramanyam Karanam; Ratish Gambhira; Sudha V. Chivukula; Revathi J. Chaganti; Douglas R. Lowy; John T. Schiller; Richard B. S. Roden

Background Vaccination with minor capsid protein L2 induces antibodies that cross-neutralize diverse papillomavirus types. However, neutralizing antibody titers against the papillomavirus type from which the L2 vaccine was derived are generally higher than the titers against heterologous types, which could limit effectiveness against heterologous types. We hypothesized that vaccination with concatenated multitype L2 fusion proteins derived from known cross-protective epitopes of several divergent human papillomavirus (HPV) types might enhance immunity across clinically relevant HPV genotypes. Methods Antibody responses of mice (n = 120) and rabbits (n = 23) to vaccination with HPV-16 amino-terminal L2 polypeptides or multitype L2 fusion proteins, namely, 11-200 × 3 (HPV types 6, 16, 18), 11-88 × 5 (HPV types 1, 5, 6, 16, 18), or 17-36 × 22 (five cutaneous, two mucosal low-risk, and 15 oncogenic types), that were formulated alone or in GPI-0100, alum, or 1018 ISS adjuvants were compared with vaccination with L1 virus-like particles (VLPs), including Gardasil, a licensed quadrivalent HPV L1 vaccine, and a negative control. Mice were challenged with HPV-16 pseudovirions 4 months after vaccination. Statistical tests were two-sided. Results The HPV-16 L2 polypeptides generated robust HPV-16–neutralizing antibody responses, albeit lower than those to HPV-16 L1 VLPs, and lower responses against other HPVs. In contrast, vaccination with the multitype L2 fusion proteins 11-200 x 3 and 11-88 x 5 induced high serum neutralizing antibody titers against all heterologous HPVs tested. 11-200 × 3 formulated in GPI-0100 adjuvant or alum with 1018 ISS protected mice against HPV-16 challenge (reduction in HPV-16 infection vs phosphate-buffered saline control, P < .001) 4 months after vaccination as well as HPV-16 L1 VLPs, but 11-200 × 3 alone or formulated with either alum or 1018 ISS was less effective (reduction in HPV-16 infection, P < .001). Conclusion Concatenated multitype L2 proteins in adjuvant have potential as pan-oncogenic HPV vaccines.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing a broadly cross-neutralizing epitope of L2

Hannah H. Alphs; Ratish Gambhira; Balasubramanyam Karanam; Jeffrey N. Roberts; Subhashini Jagu; John T. Schiller; Weiguang Zeng; David C. Jackson; Richard Roden

Persistent infection with the high-risk subset of genitotropic human papillomavirus (HPV) genotypes is a necessary cause of cervical cancer. Given the global burden of cervical cancer, a low-cost, broadly protective vaccine is needed. RG-1 is a cross-neutralizing and protective monoclonal antibody that recognizes residues 17–36 of HPV16 minor capsid protein L2. Because this epitope is highly conserved in divergent HPV types, we determined whether vaccination with HPV16 L2 17–36 peptide is broadly protective. The peptide was administered to BALB/c mice three times at monthly intervals, either alone or in the context of a synthetic lipopeptide vaccine candidate (P25-P2C-HPV) produced by linkage of the HPV peptide with a broadly recognized T helper epitope (P25) and the Toll-like receptor-2 (TLR2) ligand dipalmitoyl-S-glyceryl cysteine (P2C). In contrast to vaccination with the L2 17–36 peptide or P25-P2C alone, a potent L2-specific antibody response was generated to the P25-P2C-HPV lipopeptide when delivered either s.c. or intranasally. Sera from mice vaccinated with the P25-P2C-HPV lipopeptide neutralized not only HPV16 pseudovirions but also other evolutionarily divergent oncogenic genital (HPV18, HPV45) and cutaneous (HPV5, BPV1) types. The L2-specific antibody response depended on MHC class II, CD40, and MyD88 signaling. Additionally, vaccination with the P25-P2C-HPV lipopeptide protected mice from homologous challenge with HPV16 pseudovirions at cutaneous and genital sites and heterologous challenge with HPV45 pseudovirions. If provided in the appropriate context, therefore, HPV16 L2 17–36 might be used in a totally synthetic cross-protective HPV vaccine.


Journal of Virology | 2007

Protection of Rabbits against Challenge with Rabbit Papillomaviruses by Immunization with the N Terminus of Human Papillomavirus Type 16 Minor Capsid Antigen L2

Ratish Gambhira; Subhashini Jagu; Balasubramanyam Karanam; Patti E. Gravitt; Timothy D. Culp; Neil D. Christensen; Richard B. S. Roden

ABSTRACT Current L1 virus-like particle (VLP) vaccines provide type-restricted protection against a small subset of the human papillomavirus (HPV) genotypes associated with cervical cancer, necessitating continued cytologic screening of vaccinees. Cervical cancer is most problematic in countries that lack the resources for screening or highly multivalent HPV VLP vaccines, suggesting the need for a low-cost, broadly protective vaccinogen. Here, N-terminal L2 polypeptides comprising residues 1 to 88 or 11 to 200 derived from HPV16, bovine papillomavirus type 1 (BPV1), or cottontail rabbit papillomavirus (CRPV) were produced in bacteria. Rabbits were immunized with these N-terminal L2 polypeptides and concurrently challenged with CRPV and rabbit oral papillomavirus (ROPV). Vaccination with either N-terminal L2 polypeptides of CRPV effectively protected rabbits from CRPV challenge but not from papillomas induced by cutaneous challenge with CRPV genomic DNA. Furthermore, papillomas induced by CRPV genomic DNA deficient for L2 expression grew at the same rate as those induced by wild-type CRPV genomic DNA, further suggesting that the L2 polypeptide vaccines lack therapeutic activity. Neutralizing serum antibody titers of >15 correlated with protection (P < 0.001), a finding consistent with neutralizing antibody-mediated protection. Surprisingly, a remarkable degree of protection against heterologous papillomavirus types was observed after vaccination with N-terminal L2 polypeptides. Notably, vaccination with HPV16 L2 11-200 protected against cutaneous and mucosal challenge with CRPV and ROPV, respectively, papillomaviruses that are evolutionarily divergent from HPV16. Further, vaccination with HPV16 L2 11-200 generates broadly cross-neutralizing serum antibody, suggesting the potential of L2 as a second-generation preventive HPV vaccine antigen.


Journal of Biological Chemistry | 2006

Kinetic and Mass Spectrometric Analysis of p300 Histone Acetyltransferase Domain Autoacetylation

Balasubramanyam Karanam; Lihua Jiang; Ling Wang; Neil L. Kelleher; Philip A. Cole

Acetylation of proteins by p300 histone acetyltransferase plays a critical role in the regulation of gene expression. The prior discovery of an autoacetylated regulatory loop in the p300 histone acetyltransferase (HAT) domain prompted us to further explore the mechanisms of p300 autoacetylation. Here we have described a kinetic and mass spectrometric analysis of p300 HAT autoacetylation. The rate of p300 HAT autoacetylation was approximately fourth order with respect to p300 HAT domain concentration and thus appeared to be a highly cooperative process. By showing that a catalytically defective p300 HAT domain could be efficiently acetylated by active p300 HAT, we deduced that autoacetylation occurs primarily by an intermolecular mechanism. This was further confirmed using a semisynthetic biotinylated p300 HAT domain that could be physically separated from the catalytically defective p300 HAT by avidin affinity chromatography. Autoacetylation catalyzed by p300 HAT was ∼1000-fold more efficient than PCAF (p300/CREB-binding protein-associated factor)-mediated acetylation of catalytically defective p300 HAT. Using a novel tandem mass spectrometric approach, it was found to be possible to observe up to 17 autoacetylation events within the intact p300 regulatory loop. Kinetic analysis of the site specificity of p300 autoacetylation reveals a class of rapid events followed by a slower set of modifications. Several of these rapid autoacetylation sites correlate with an acetyltransferase-activating function based on prior mutagenesis analysis.


Cancer Cell | 2013

A bis-Benzylidine Piperidone Targeting Proteasome Ubiquitin Receptor RPN13/ADRM1 as a therapy for cancer

Ravi K. Anchoori; Balasubramanyam Karanam; Shiwen Peng; Joshua W. Wang; Rosie Jiang; Toshihiko Tanno; Robert Z. Orlowski; William Matsui; Ming Zhao; Michelle A. Rudek; Chien Fu Hung; Xiang Chen; Kylie J. Walters; Richard Roden

The bis-benzylidine piperidone RA190 covalently binds to cysteine 88 of ubiquitin receptor RPN13 in the 19S regulatory particle and inhibits proteasome function, triggering rapid accumulation of polyubiquitinated proteins. Multiple myeloma (MM) lines, even those resistant to bortezomib, were sensitive to RA190 via endoplasmic reticulum stress-related apoptosis. RA190 stabilized targets of human papillomavirus (HPV) E6 oncoprotein, and preferentially killed HPV-transformed cells. After oral or intraperitoneal dosing of mice, RA190 distributed to plasma and major organs except the brain and inhibited proteasome function in skin and muscle. RA190 administration profoundly reduced growth of MM and ovarian cancer xenografts, and oral RA190 treatment retarded HPV16(+) syngeneic mouse tumor growth, without affecting spontaneous HPV-specific CD8(+) T cell responses, suggesting its therapeutic potential.


Immunology and Cell Biology | 2009

Developing vaccines against minor capsid antigen L2 to prevent papillomavirus infection

Balasubramanyam Karanam; Subhashini Jagu; Warner K. Huh; Richard Roden

A subset of human papillomavirus (HPV) genotypes is responsible for ∼5% of all cancer deaths globally, and uterine cervical carcinoma accounts for the majority of these cases. The impact of HPV is greatest for women who do not have access to effective secondary preventive measures, and consequently over 80% of cervical cancer deaths worldwide occur in developing nations. The understanding that persistent infection by this ‘oncogenic’ subset of HPV genotypes is necessary for the development of cervical carcinoma has driven the development of preventive vaccines. Two preventive vaccines comprising recombinant HPV L1 virus‐like particles (VLPs) have been licensed. However, the current cost of these vaccines precludes sustained global delivery, and they target only two of the ∼15 known oncogenic HPV types, although ∼70% of cervical cancer cases are attributed to these two types and there is evidence for some degree of cross‐protection against other closely related types. A possible approach to broader immunity at lower cost is to consider vaccination against L2. L2 vaccines can be produced inexpensively and they also have the promise of conferring much broader cross‐type protective immunity than that observed with L1 VLP immunization. However, L2 vaccine development lags behind L1 VLP vaccines and several technical hurdles remain.


Journal of Medicinal Chemistry | 2011

α,β-Unsaturated Carbonyl System of Chalcone-Based Derivatives is Responsible for Broad Inhibition of Proteasomal Activity and Preferential Killing of Human Papilloma Virus (HPV)-Positive Cervical Cancer Cells

Martina Bazzaro; Ravi K. Anchoori; Mohana Krishna R Mudiam; Olga A. Issaenko; Srinivas K. Kumar; Balasubramanyam Karanam; Zhenhua Lin; Rachel Isaksson Vogel; Riccardo Gavioli; Federica Destro; Valeria Ferretti; Richard Roden; Saeed R. Khan

Proteasome inhibitors have potential for the treatment of cervical cancer. We describe the synthesis and biological characterization of a new series of 1,3-diphenylpropen-1-one (chalcone) based derivatives lacking the boronic acid moieties of the previously reported chalcone-based proteasome inhibitor 3,5-bis(4-boronic acid benzylidene)-1-methylpiperidin-4-one and bearing a variety of amino acid substitutions on the amino group of the 4-piperidone. Our lead compound 2 (RA-1) inhibits proteasomal activity and has improved dose-dependent antiproliferative and proapoptotic properties in cervical cancer cells containing human papillomavirus. Further, it induces synergistic killing of cervical cancer cell lines when tested in combination with an FDA approved proteasome inhibitor. Exploration of the potential mechanism of proteasomal inhibition by our lead compound using in silico docking studies suggests that the carbonyl group of its oxopiperidine moiety is susceptible to nucleophilic attack by the γ-hydroxythreonine side chain within the catalytic sites of the proteasome.


PLOS ONE | 2012

Development of AAVLP(HPV16/31L2) particles as broadly protective HPV vaccine candidate

Karen Nieto; Margit Weghofer; Peter Sehr; Mirko Ritter; Sebastian Sedlmeier; Balasubramanyam Karanam; Hanna Seitz; Martin Müller; Markus Kellner; Markus Hörer; Uwe Michaelis; Richard Roden; Lutz Gissmann; Jürgen A. Kleinschmidt

The human papillomavirus (HPV) minor capsid protein L2 is a promising candidate for a broadly protective HPV vaccine yet the titers obtained in most experimental systems are rather low. Here we examine the potential of empty AAV2 particles (AAVLPs), assembled from VP3 alone, for display of L2 epitopes to enhance their immunogenicity. Insertion of a neutralizing epitope (amino acids 17–36) from L2 of HPV16 and HPV31 into VP3 at positions 587 and 453, respectively, permitted assembly into empty AAV particles (AAVLP(HPV16/31L2)). Intramuscularly vaccination of mice and rabbits with AAVLP(HPV16/31L2)s in montanide adjuvant, induced high titers of HPV16 L2 antibodies as measured by ELISA. Sera obtained from animals vaccinated with the AAVLP(HPV16/31L2)s neutralized infections with several HPV types in a pseudovirion infection assay. Lyophilized AAVLP(HPV16/31L2) particles retained their immunogenicity upon reconstitution. Interestingly, vaccination of animals that were pre-immunized with AAV2 - simulating the high prevalence of AAV2 antibodies in the population - even increased cross neutralization against HPV31, 45 and 58 types. Finally, passive transfer of rabbit antisera directed against AAVLP(HPV16/31L2)s protected naïve mice from vaginal challenge with HPV16 pseudovirions. In conclusion, AAVLP(HPV16/31L2) particles have the potential as a broadly protective vaccine candidate regardless of prior exposure to AAV.


Vaccine | 2009

Vaccination with HPV16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity.

Balasubramanyam Karanam; Ratish Gambhira; Shiwen Peng; Subhashini Jagu; Daejin Kim; Gary Ketner; Peter L. Stern; Robert J. Adams; Richard Roden

A vaccine comprising human papillomavirus type 16 (HPV16) L2, E6 and E7 in a single tandem fusion protein (termed TA-CIN) has the potential advantages of both broad cross-protection against HPV transmission through induction of L2 antibodies able to cross neutralize different HPV types and of therapy by stimulating T cell responses targeting HPV16 early proteins. However, patients vaccinated with TA-CIN alone develop weak HPV neutralizing antibody and E6/E7-specific T cell responses. Here we test TA-CIN formulated along with the adjuvant GPI-0100, a semi-synthetic quillaja saponin analog that was developed to promote both humoral and cellular immune responses. Subcutaneous administration to mice of TA-CIN (20 microg) with 50microg GPI-0100, three times at biweekly intervals, elicited high titer HPV16 neutralizing serum antibody, robust neutralizing titers for other HPV16-related types, including HPV31 and HPV58, and neutralized to a lesser extent other genital mucosatropic papillomaviruses like HPV18, HPV45, HPV6 and HPV11. Notably, vaccination with TA-CIN in GPI-0100 protected mice from cutaneous HPV16 challenge as effectively as HPV16 L1 VLP without adjuvant. Formulation of TA-CIN with GPI-0100 enhanced the production of E7-specific, interferon gamma producing CD8(+) T cell precursors by 20-fold. Vaccination with TA-CIN in GPI-0100 also completely prevented tumor growth after challenge with 5x10(4) HPV16-transformed TC-1 tumor cells, whereas vaccination with TA-CIN alone delayed tumor growth. Furthermore, three monthly vaccinations with 125 microg of TA-CIN and 1000 microg GPI-0100 were well tolerated by pigtail macaques and induced both HPV16 E6/E7-specific T cell responses and serum antibodies that neutralized all HPV types tested.

Collaboration


Dive into the Balasubramanyam Karanam's collaboration.

Top Co-Authors

Avatar

Richard Roden

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiwen Peng

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Chien Fu Hung

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Warner K. Huh

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Daejin Kim

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Kihyuck Kwak

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge