Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Subhashini Jagu is active.

Publication


Featured researches published by Subhashini Jagu.


Journal of Virology | 2007

A Protective and Broadly Cross-Neutralizing Epitope of Human Papillomavirus L2

Ratish Gambhira; Balasubramanyam Karanam; Subhashini Jagu; Jeffrey N. Roberts; Christopher B. Buck; Ioannis Bossis; Hannah H. Alphs; Timothy D. Culp; Neil D. Christensen; Richard B. S. Roden

ABSTRACT We generated a monoclonal antibody, RG-1, that binds to highly conserved L2 residues 17 to 36 and neutralizes human papillomavirus 16 (HPV16) and HPV18. Passive immunotherapy with RG-1 was protective in mice. Antiserum to the HPV16 L2 peptide comprising residues 17 to 36 (peptide 17-36) neutralized pseudoviruses HPV5, HPV6, HPV16, HPV 18, HPV31, HPV 45, HPV 52, HPV 58, bovine papillomavirus 1, and HPV11 native virions. Depletion of HPV16 L2 peptide 17-36-reactive antibodies from cross-neutralizing rabbit and human L2-specific sera abolished cross-neutralization and drastically reduced neutralization of the cognate type. This cross-neutralization of diverse HPVs associated with cervical cancer, genital warts, and epidermodysplasia verruciformis suggests the possibility of a broadly protective, peptide-based vaccine.


Journal of the National Cancer Institute | 2009

Concatenated Multitype L2 Fusion Proteins as Candidate Prophylactic Pan-Human Papillomavirus Vaccines

Subhashini Jagu; Balasubramanyam Karanam; Ratish Gambhira; Sudha V. Chivukula; Revathi J. Chaganti; Douglas R. Lowy; John T. Schiller; Richard B. S. Roden

Background Vaccination with minor capsid protein L2 induces antibodies that cross-neutralize diverse papillomavirus types. However, neutralizing antibody titers against the papillomavirus type from which the L2 vaccine was derived are generally higher than the titers against heterologous types, which could limit effectiveness against heterologous types. We hypothesized that vaccination with concatenated multitype L2 fusion proteins derived from known cross-protective epitopes of several divergent human papillomavirus (HPV) types might enhance immunity across clinically relevant HPV genotypes. Methods Antibody responses of mice (n = 120) and rabbits (n = 23) to vaccination with HPV-16 amino-terminal L2 polypeptides or multitype L2 fusion proteins, namely, 11-200 × 3 (HPV types 6, 16, 18), 11-88 × 5 (HPV types 1, 5, 6, 16, 18), or 17-36 × 22 (five cutaneous, two mucosal low-risk, and 15 oncogenic types), that were formulated alone or in GPI-0100, alum, or 1018 ISS adjuvants were compared with vaccination with L1 virus-like particles (VLPs), including Gardasil, a licensed quadrivalent HPV L1 vaccine, and a negative control. Mice were challenged with HPV-16 pseudovirions 4 months after vaccination. Statistical tests were two-sided. Results The HPV-16 L2 polypeptides generated robust HPV-16–neutralizing antibody responses, albeit lower than those to HPV-16 L1 VLPs, and lower responses against other HPVs. In contrast, vaccination with the multitype L2 fusion proteins 11-200 x 3 and 11-88 x 5 induced high serum neutralizing antibody titers against all heterologous HPVs tested. 11-200 × 3 formulated in GPI-0100 adjuvant or alum with 1018 ISS protected mice against HPV-16 challenge (reduction in HPV-16 infection vs phosphate-buffered saline control, P < .001) 4 months after vaccination as well as HPV-16 L1 VLPs, but 11-200 × 3 alone or formulated with either alum or 1018 ISS was less effective (reduction in HPV-16 infection, P < .001). Conclusion Concatenated multitype L2 proteins in adjuvant have potential as pan-oncogenic HPV vaccines.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing a broadly cross-neutralizing epitope of L2

Hannah H. Alphs; Ratish Gambhira; Balasubramanyam Karanam; Jeffrey N. Roberts; Subhashini Jagu; John T. Schiller; Weiguang Zeng; David C. Jackson; Richard Roden

Persistent infection with the high-risk subset of genitotropic human papillomavirus (HPV) genotypes is a necessary cause of cervical cancer. Given the global burden of cervical cancer, a low-cost, broadly protective vaccine is needed. RG-1 is a cross-neutralizing and protective monoclonal antibody that recognizes residues 17–36 of HPV16 minor capsid protein L2. Because this epitope is highly conserved in divergent HPV types, we determined whether vaccination with HPV16 L2 17–36 peptide is broadly protective. The peptide was administered to BALB/c mice three times at monthly intervals, either alone or in the context of a synthetic lipopeptide vaccine candidate (P25-P2C-HPV) produced by linkage of the HPV peptide with a broadly recognized T helper epitope (P25) and the Toll-like receptor-2 (TLR2) ligand dipalmitoyl-S-glyceryl cysteine (P2C). In contrast to vaccination with the L2 17–36 peptide or P25-P2C alone, a potent L2-specific antibody response was generated to the P25-P2C-HPV lipopeptide when delivered either s.c. or intranasally. Sera from mice vaccinated with the P25-P2C-HPV lipopeptide neutralized not only HPV16 pseudovirions but also other evolutionarily divergent oncogenic genital (HPV18, HPV45) and cutaneous (HPV5, BPV1) types. The L2-specific antibody response depended on MHC class II, CD40, and MyD88 signaling. Additionally, vaccination with the P25-P2C-HPV lipopeptide protected mice from homologous challenge with HPV16 pseudovirions at cutaneous and genital sites and heterologous challenge with HPV45 pseudovirions. If provided in the appropriate context, therefore, HPV16 L2 17–36 might be used in a totally synthetic cross-protective HPV vaccine.


Journal of Virology | 2007

Protection of Rabbits against Challenge with Rabbit Papillomaviruses by Immunization with the N Terminus of Human Papillomavirus Type 16 Minor Capsid Antigen L2

Ratish Gambhira; Subhashini Jagu; Balasubramanyam Karanam; Patti E. Gravitt; Timothy D. Culp; Neil D. Christensen; Richard B. S. Roden

ABSTRACT Current L1 virus-like particle (VLP) vaccines provide type-restricted protection against a small subset of the human papillomavirus (HPV) genotypes associated with cervical cancer, necessitating continued cytologic screening of vaccinees. Cervical cancer is most problematic in countries that lack the resources for screening or highly multivalent HPV VLP vaccines, suggesting the need for a low-cost, broadly protective vaccinogen. Here, N-terminal L2 polypeptides comprising residues 1 to 88 or 11 to 200 derived from HPV16, bovine papillomavirus type 1 (BPV1), or cottontail rabbit papillomavirus (CRPV) were produced in bacteria. Rabbits were immunized with these N-terminal L2 polypeptides and concurrently challenged with CRPV and rabbit oral papillomavirus (ROPV). Vaccination with either N-terminal L2 polypeptides of CRPV effectively protected rabbits from CRPV challenge but not from papillomas induced by cutaneous challenge with CRPV genomic DNA. Furthermore, papillomas induced by CRPV genomic DNA deficient for L2 expression grew at the same rate as those induced by wild-type CRPV genomic DNA, further suggesting that the L2 polypeptide vaccines lack therapeutic activity. Neutralizing serum antibody titers of >15 correlated with protection (P < 0.001), a finding consistent with neutralizing antibody-mediated protection. Surprisingly, a remarkable degree of protection against heterologous papillomavirus types was observed after vaccination with N-terminal L2 polypeptides. Notably, vaccination with HPV16 L2 11-200 protected against cutaneous and mucosal challenge with CRPV and ROPV, respectively, papillomaviruses that are evolutionarily divergent from HPV16. Further, vaccination with HPV16 L2 11-200 generates broadly cross-neutralizing serum antibody, suggesting the potential of L2 as a second-generation preventive HPV vaccine antigen.


Immunology and Cell Biology | 2009

Developing vaccines against minor capsid antigen L2 to prevent papillomavirus infection

Balasubramanyam Karanam; Subhashini Jagu; Warner K. Huh; Richard Roden

A subset of human papillomavirus (HPV) genotypes is responsible for ∼5% of all cancer deaths globally, and uterine cervical carcinoma accounts for the majority of these cases. The impact of HPV is greatest for women who do not have access to effective secondary preventive measures, and consequently over 80% of cervical cancer deaths worldwide occur in developing nations. The understanding that persistent infection by this ‘oncogenic’ subset of HPV genotypes is necessary for the development of cervical carcinoma has driven the development of preventive vaccines. Two preventive vaccines comprising recombinant HPV L1 virus‐like particles (VLPs) have been licensed. However, the current cost of these vaccines precludes sustained global delivery, and they target only two of the ∼15 known oncogenic HPV types, although ∼70% of cervical cancer cases are attributed to these two types and there is evidence for some degree of cross‐protection against other closely related types. A possible approach to broader immunity at lower cost is to consider vaccination against L2. L2 vaccines can be produced inexpensively and they also have the promise of conferring much broader cross‐type protective immunity than that observed with L1 VLP immunization. However, L2 vaccine development lags behind L1 VLP vaccines and several technical hurdles remain.


Vaccine | 2009

Vaccination with HPV16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity.

Balasubramanyam Karanam; Ratish Gambhira; Shiwen Peng; Subhashini Jagu; Daejin Kim; Gary Ketner; Peter L. Stern; Robert J. Adams; Richard Roden

A vaccine comprising human papillomavirus type 16 (HPV16) L2, E6 and E7 in a single tandem fusion protein (termed TA-CIN) has the potential advantages of both broad cross-protection against HPV transmission through induction of L2 antibodies able to cross neutralize different HPV types and of therapy by stimulating T cell responses targeting HPV16 early proteins. However, patients vaccinated with TA-CIN alone develop weak HPV neutralizing antibody and E6/E7-specific T cell responses. Here we test TA-CIN formulated along with the adjuvant GPI-0100, a semi-synthetic quillaja saponin analog that was developed to promote both humoral and cellular immune responses. Subcutaneous administration to mice of TA-CIN (20 microg) with 50microg GPI-0100, three times at biweekly intervals, elicited high titer HPV16 neutralizing serum antibody, robust neutralizing titers for other HPV16-related types, including HPV31 and HPV58, and neutralized to a lesser extent other genital mucosatropic papillomaviruses like HPV18, HPV45, HPV6 and HPV11. Notably, vaccination with TA-CIN in GPI-0100 protected mice from cutaneous HPV16 challenge as effectively as HPV16 L1 VLP without adjuvant. Formulation of TA-CIN with GPI-0100 enhanced the production of E7-specific, interferon gamma producing CD8(+) T cell precursors by 20-fold. Vaccination with TA-CIN in GPI-0100 also completely prevented tumor growth after challenge with 5x10(4) HPV16-transformed TC-1 tumor cells, whereas vaccination with TA-CIN alone delayed tumor growth. Furthermore, three monthly vaccinations with 125 microg of TA-CIN and 1000 microg GPI-0100 were well tolerated by pigtail macaques and induced both HPV16 E6/E7-specific T cell responses and serum antibodies that neutralized all HPV types tested.


Vaccine | 2010

Vaccination with multimeric L2 fusion protein and L1 VLP or capsomeres to broaden protection against HPV infection.

Subhashini Jagu; Kihyuck Kwak; Robert L. Garcea; Richard Roden

Immunization with L1 as pentavalent capsomeres or virus-like particles (VLPs) generates high and long-lived titers of neutralizing antibodies and protection primarily against the human papillomavirus (HPV) type from which the vaccine was derived. Conversely, vaccination with L2 minor capsid protein derived from multiple HPV types induces lower titer, but more broadly neutralizing and protective antibody responses. We combined the advantages of each protective antigen by immunization with titrated doses of multi-type L2 with either L1 capsomeres or VLP. We observed no significant interference between the L1 and L2 antibody response upon co-administration of L1 vaccines with multi-type L2 vaccines.


PLOS ONE | 2013

Optimization of Multimeric Human Papillomavirus L2 Vaccines

Subhashini Jagu; Kihyuck Kwak; Balasubramanyam Karanam; Warner K. Huh; Vijayarangam Damotharan; Sudha V. Chivukula; Richard B. S. Roden

We sought to define the protective epitopes within the amino terminus of human papillomavirus (HPV) type 16 minor capsid protein L2. Passive transfer of mice with rabbit antisera to HPV16 L2 peptides 17–36, 32–51 and 65–81 provided significant protection against vaginal HPV16 challenge, whereas antisera to 47–66, 108–120 or 373–392 did not. Vaccination with L1 virus-like particles induces a high titer, but generally type-restricted neutralizing antibody response. Conversely, vaccination with L2 11–88, especially multimers thereof, induces antibodies that neutralize a broad range of papillomavirus types, albeit at lower titers than for L1 VLP. With the intent of enhancing the immunogenicity and the breadth of protection by focusing the immune response to the key protective epitopes, we designed L2 fusion proteins consisting of residues ∼11–88 of eight divergent mucosal HPV types 6, 16, 18, 31, 39, 51, 56, 73 (11–88×8) or residues ∼13–47 of fifteen HPV types (13–47×15). The 11–88×8 was significantly more immunogenic than 13–47×15 in Balb/c mice regardless of the adjuvant used, suggesting the value of including the 65–81 protective epitope in the vaccine. Since the L2 47–66 peptide antiserum failed to elicit significant protection, we generated an 11–88×8 construct deleted for this region in each subunit (11–88×8Δ). Mice were vaccinated with 11–88×8 and 11–88×8Δ to determine if deletion of this non-protective epitope enhanced the neutralizing antibody response. However, 11–88×8Δ was significantly less immunogenic than 11–88×8, and even the addition of a known T helper epitope, PADRE, to the construct (11–88×8ΔPADRE) failed to recover the immunogenicity of 11–88×8 in C57BL/6 mice, suggesting that while L2 47–66 is not a critical protective or T helper epitope, it nevertheless contributes to the immunogenicity of the L2 11–88×8 multimer vaccine.


Journal of Virology | 2013

Phylogenetic Considerations in Designing a Broadly Protective Multimeric L2 Vaccine

Subhashini Jagu; Kihyuck Kwak; John T. Schiller; Douglas R. Lowy; Harold Kleanthous; Kirill Kalnin; Chenguang Wang; Hsu Kun Wang; Louise T. Chow; Warner K. Huh; Kilvani S. Jaganathan; Sudha V. Chivukula; Richard Roden

ABSTRACT While the oncogenic human papillomavirus (HPV) types with the greatest medical impact are clustered within the α9 and α7 species, a significant fraction of cervical cancers are caused by α5, α6, and α11 viruses. Benign genital warts are caused principally by the α10 viruses HPV6 and HPV11. In an effort to achieve broad protection against both cervical cancer- and genital wart-associated types, we produced at high levels in bacteria a multimeric protein (α11-88x8) fusing eight polypeptides corresponding to a protective domain comprising L2 residues ∼11 to 88 derived from HPV6 (α10), HPV16 (α9), HPV18 (α7), HPV31 (α9), HPV39 (α7), HPV51 (α5), HPV56 (α6), and HPV73 (α11) and a truncated derivative with the last three units deleted (α11-88x5). Mice were immunized three times with α11-88x8 or α11-88x5 adjuvanted with alum or the licensed HPV vaccines and challenged intravaginally with HPV6, HPV16, HPV26, HPV31, HPV33, HPV35, HPV45, HPV51, HPV56, HPV58, or HPV59 pseudovirions. The α11-88x5 and α11-88x8 vaccines induced similarly robust protection against each HPV type tested and indistinguishable HPV16-neutralizing antibody titers. Passive transfer of α11-88x8 antisera was protective. Further, rabbit antisera to α11-88x8 and α11-88x5 similarly neutralized native HPV18 virions. These findings suggest that immunologic competition between units is not a significant issue and that it is not necessary to include a unit of L2 derived from each species to achieve broader protection against diverse medically significant HPV types than is achieved with the licensed HPV vaccines.


American Journal of Pathology | 2009

Expression Pattern and Subcellular Localization of Human Papillomavirus Minor Capsid Protein L2

Zhenhua Lin; Anna Yemelyanova; Ratish Gambhira; Subhashini Jagu; Craig Meyers; Reinhard Kirnbauer; Brigitte M. Ronnett; Patti E. Gravitt; Richard Roden

The expression pattern of human papillomavirus (HPV) capsid antigen L2 is poorly described, and the significance of its localization with both promyelocytic leukemia protein (PML) and Daxx in a subnuclear domain, nuclear domain 10 (ND-10), when ectopically expressed in tissue culture cells is controversial. To address whether ND-10 localization of L2 occurs in natural cervical lesions, we used a HPV16 and HPV18 L2-specific monoclonal antibody (RG-1), in addition to rabbit antiserum to HPV6 L2, to localize L2. Immunohistochemical staining with RG-1 produced diffuse staining in the nuclei of some cells located within the superficial epithelial layers in eight of nine cases of HPV16/18(+) cervical intraepithelial neoplasia grade 1 (CIN1); however, no staining was observed in HPV16/18(+) high-grade CIN (0 of 8 cases), normal cervical epithelium (0 of 20 cases), cervical squamous cell carcinoma (0 of 102 cases), adenocarcinoma (0 of 51 cases), or adenosquamous carcinoma (0 of 6 cases). HPV16/18(+) cervical lesions that express L2 exhibit higher HPV16/18 genome copies per cell compared with those that do not positively stain with RG-1 (P = 0.04). RG-1 staining of HeLa cells transfected with L2 expression constructs was frequently concentrated in the ND-10, particularly in cells expressing high levels of L2, and co-localized with the cellular markers of ND-10, PML, and Daxx. In contrast, L2 was primarily diffuse within the nucleus and distinct from ND-10 as defined by PML immunofluorescent staining in CIN lesions, condylomata, and HPV16-transduced organotypic cultures.

Collaboration


Dive into the Subhashini Jagu's collaboration.

Top Co-Authors

Avatar

Richard Roden

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kihyuck Kwak

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua W. Wang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Neil D. Christensen

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Warner K. Huh

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Richard B. S. Roden

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Peter L. Stern

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge