Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Balazs D. Fulop is active.

Publication


Featured researches published by Balazs D. Fulop.


SpringerPlus | 2015

Neurochemical changes in different brain regions induced by PACAP - relations to neuroprotection

Dora Reglodi; Gábor Maász; Zsolt Pirger; Adam Rivnyak; Dorottya Balogh; Adel Jungling; Balazs D. Fulop; László Márk; Andrea Tamas

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with diverse occurrence and functions. One of the most well-known effects of PACAP is its strong neuroprotective effect. In this presentation we give an insight into recently described neurochemical changes induced by PACAP or altered by PACAP the lack of it. In an invertebrate model for Parkinson’s disease we found that PACAP effectively counteracts the dopamine-decreasing effect of rotenone, a mitochondrial neurotoxin. Similarly, in a 6-hydroxydopamine-induced rat model of Parkinson’s disease, we found that PACAP effectively increases dopamine levels. Furthermore, our proteomics analysis shows that PACAP treatment also counteracts the 6-OHDA-induced decrease in PARK-7 protein, effective against oxidative stress. Studying the role of endogenous PACAP, we found that PACAP-deficient mice show higher susceptibility to toxic agents causing degeneration of the substantia nigra dopaminergic neurons. Using proteomic analysis we revealed that the expression of numerous proteins is altered in the mesencephalon and striatum of knockout mice. Among the altered proteins, several are involved in metabolic processes, energy homeostasis, and structural integrity. ATP-synthase and tubulin beta-2A were expressed more strongly in PACAP-knockout mice. In contrast, the expression of more peptides/proteins markedly decreased in knockout mice, like pyruvate kinase, fructose biphosphate aldolase-A, glutathione S-transferase, peptidyl propyl cis-trans isomerase-A, gamma enolase, beta-synuclein and aspartate amino transferase. The altered expression of these proteins might partially account for the decreased antioxidant, cytoprotective and detoxifying capacity of PACAP-deficient mice. The described changes may provide further explanation for the neuroprotective potency of PACAP.


Endocrinology | 2016

Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Regulates the Hypothalamo-Pituitary-Thyroid (HPT) Axis via Type 2 Deiodinase in Male Mice

Péter Egri; Csaba Fekete; Á. Dénes; Dóra Reglődi; Hitoshi Hashimoto; Balazs D. Fulop; Balázs Gereben

The hypothalamic activation of thyroid hormones by type 2 deiodinase (D2), catalyzing the conversion of thyroxine to T3, is critical for the proper function of the hypothalamo-pituitary-thyroid (HPT) axis. Regulation of D2 expression in tanycytes alters the activity of the HPT axis. However, signals that regulate D2 expression in tanycytes are poorly understood. The pituitary adenylate cyclase-activating polypeptide (PACAP) increases intracellular cAMP level, a second messenger known to stimulate the DIO2 gene; however, its importance in tanycytes is not completely characterized. Therefore, we tested whether this ubiquitously expressed neuropeptide regulates the HPT axis through stimulation of D2 in tanycytes. PACAP increased the activity of human DIO2 promoter in luciferase reporter assay that was abolished by mutation of cAMP-response element. Furthermore, PAC1R receptor immunoreactivity was identified in hypothalamic tanycytes, suggesting that these D2-expressing cells could be regulated by PACAP. Intracerebroventricular PACAP administration resulted in increased D2 activity in the mediobasal hypothalamus, suppressed Trh expression in the hypothalamic paraventricular nucleus, and decreased Tshb expression in the pituitary demonstrating that PACAP affects the D2-mediated control of the HPT axis. To understand the role of endogenous PACAP in the regulation of HPT axis, the effect of decreased PACAP expression was studied in heterozygous Adcyap1 (PACAP) knockout mice. These animals were hypothyroid that may be the consequence of altered hypothalamic T3 degradation during set-point formation of the HPT axis. In conclusion, PACAP is an endogenous regulator of the HPT axis by affecting T3-mediated negative feedback via cAMP-induced D2 expression of tanycytes.


Transplantation Proceedings | 2015

Ischemia/reperfusion-induced Kidney Injury in Heterozygous PACAP-deficient Mice

E. Laszlo; Angelika Varga; Krisztina Kovacs; Gábor Jancsó; Peter Kiss; Andrea Tamas; Peter Szakaly; Balazs D. Fulop; Dora Reglodi

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with very diverse distribution and functions. Among others, PACAP is a potent cytoprotective peptide due to its antiapoptotic, anti-inflammatory, and antioxidant actions. This also has been shown in different kidney pathologies, including ischemia/reperfusion-induced kidney injury. Similar protective effects of the endogenous PACAP are confirmed by the increased vulnerability of PACAP-deficient mice to different harmful stimuli. Kidneys of homozygous PACAP-deficient mice have more severe damages in renal ischemia/reperfusion and kidney cell cultures isolated from these mice show increased sensitivity to renal oxidative stress. In our present study we raised the question of whether the partial lack of the PACAP gene is also deleterious, i.e. whether heterozygous PACAP-deficient mice also display more severe damage after renal ischemia/reperfusion. Mice underwent 45 or 60 minutes of ischemia followed by 2 weeks reperfusion. Histological evaluation of the kidneys was performed and individual histopathological parameters were graded. Furthermore, we investigated apoptotic markers, cytokine expression, and the activity of superoxide dismutase (SOD) enzyme 24 hours after 60 minutes of renal ischemia/reperfusion. We found no difference between the intact kidneys of wild-type and heterozygous mice, but marked differences could be observed following ischemia/reperfusion. Heterozygous PACAP-deficient mice had more severe histological alterations, with significantly higher histopathological scores for most of the tested parameters. Higher level of the proapoptotic pp38 MAPK and of some proinflammatory cytokines, as well as lower activity of the antioxidant SOD could be found in these mice. In conclusion, the partial lack of the PACAP gene results in worse outcomes in cases of renal ischemia/reperfusion, confirming that PACAP functions as an endogenous protective factor in the kidney.


Journal of Molecular Neuroscience | 2014

Structural and Morphometric Comparison of the Molar Teeth in Pre-eruptive Developmental Stage of PACAP-Deficient and Wild-Type Mice

B. Sandor; K. Fintor; Sz. Felszeghy; Tamás Juhász; Dora Reglodi; László Márk; Peter Kiss; Adel Jungling; Balazs D. Fulop; András D. Nagy; Hitoshi Hashimoto; Róza Zákány; A. Nagy; Andrea Tamas

Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide with widespread distribution. It plays pivotal role in neuronal development. PACAP-immunoreactive fibers have been found in the tooth pulp, and recently, it has been shown that PACAP may also play a role in the regeneration of the periodontium after luxation injuries. However, there is no data about the effect of endogenous PACAP on tooth development. Ectodermal organogenesis including tooth development is regulated by different members of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), hedgehog (HH), and Wnt families. There is also a growing evidence to support the hypothesis that PACAP interacts with sonic hedgehog (SHH) receptor (PTCH1) and its downstream target (Gli1) suggesting its role in tooth development. Therefore, our aim was to study molar tooth development in mice lacking endogenous PACAP. In this study morphometric, immunohistochemical and structural comparison of molar teeth in pre-eruptive developmental stage was performed on histological sections of 7-day-old wild-type and PACAP-deficient mice. Further structural analysis was carried out with Raman microscope. The morphometric comparison of the 7-day-old samples revealed that the dentin was significantly thinner in the molars of PACAP-deficient mice compared to wild-type animals. Raman spectra of the enamel in wild-type mice demonstrated higher diversity in secondary structure of enamel proteins. In the dentin of PACAP-deficient mice higher intracrystalline disordering in the hydroxyapatite molecular structure was found. We also obtained altered SHH, PTCH1 and Gli1 expression level in secretory ameloblasts of PACAP-deficient mice compared to wild-type littermates suggesting that PACAP might play an important role in molar tooth development and matrix mineralization involving influence on SHH signaling cascade.


Neurotoxicity Research | 2012

Comparative Examination of Inner Ear in Wild Type and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP)-Deficient Mice

Andrea Tamas; Krisztina Szabadfi; A. Nemeth; Balazs D. Fulop; Peter Kiss; Tamas Atlasz; Robert Gábriel; Hitoshi Hashimoto; A. Baba; N. Shintani; Z. Helyes; Dora Reglodi

Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide with well-known neuroprotective and neurotrophic effects. The involvement of PACAP in sensory processing has also been documented, but little is known about its effects in the auditory system. PACAP and its specific receptor (PAC1) are present in the cochlea and in brain structures involved in auditory pathways. Recently, we have shown that PACAP protects cochlear cells against oxidative stress-induced apoptosis. The endolymphatic Ca2+ concentration controlled by Ca2+ buffers of the hair cells is essential for the normal hearing processes. In this study we examined the localization of PAC1 receptor and Ca2+ buffering proteins (parvalbumin, calretinin, calbindin) in the inner ear of 5-day-old PACAP-deficient mice compared with wild-type mice in order to get a closer insight into the effect of endogenous PACAP in the cochlear function. We did not find differences in the distribution pattern of PAC1 receptors between the two groups, but wild-type animals showed significantly higher PAC1 receptor expression. In contrast, inner and outer hair cells of PACAP-deficient mice showed more pronounced parvalbumin, calbindin, and calretinin immunopositivity compared with wild-type mice. Elevated endolymphatic Ca2+ is deleterious for cochlear function, while the high concentration of Ca2+ buffers in hair cells may offer protection. The increased immunoreactivity of Ca2+ binding proteins in the absence of PACAP provide further evidence the important role of PACAP in the hearing processes.


Journal of Vascular Research | 2017

Backup Mechanisms Maintain PACAP/VIP-Induced Arterial Relaxations in Pituitary Adenylate Cyclase-Activating Polypeptide-Deficient Mice

Ivan Ivic; Balazs D. Fulop; Tamás Juhász; Dora Reglodi; Gábor K. Tóth; Hitoshi Hashimoto; Andrea Tamas; Akos Koller

Background: Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide in the VIP/secretin/glucagon peptide superfamily. Two active forms, PACAP1-38 and PACAP1-27, act through G protein-coupled receptors, the PAC1 and VPAC1/2 receptors. Effects of PACAP include potent vasomotor activity. Vasomotor activity and organ-specific vasomotor effects of PACAP-deficient mice have not yet been investigated; thus, the assessment of its physiological importance in vasomotor functions is still missing. We hypothesized that backup mechanisms exist to maintain PACAP pathway activity in PACAP knockout (KO) mice. Thus, we investigated the vasomotor effects of exogenous vasoactive intestinal peptide (VIP) and PACAP polypeptides in PACAP wild-type (WT) and PACAP-deficient (KO) male mice. Methods: Carotid and femoral arteries were isolated from 8- to 12-week-old male WT and PACAP-KO mice. Vasomotor responses were measured with isometric myography. Results: In the arteries of WT mice the peptides induced relaxations, which were significantly greater to PACAP1-38 than to PACAP1-27 and VIP. In KO mice, PACAP1-38 did not elicit relaxation, whereas PACAP1-27 and VIP elicited significantly greater relaxation in KO mice than in WT mice. The specific PAC1R and VPAC1R antagonist completely blocked the PACAP-induced relaxations. Conclusion: Our data suggest that in PACAP deficiency, backup mechanisms maintain arterial relaxations to polypeptides, indicating an important physiological role for the PACAP pathway in the regulation of vascular tone.


Archive | 2016

Protective Intestinal Effects of Pituitary Adenylate Cyclase Activating Polypeptide

Gabriella Horvath; Anita Illés; Markus M. Heimesaat; Attila Bardosi; Sebastian Bardosi; Andrea Tamas; Balazs D. Fulop; Balazs Opper; József Németh; Andrea Ferencz; Dora Reglodi

Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide widely distributed throughout the body, including the gastrointestinal tract. Several effects have been described in human and animal intestines. Among others, PACAP influences secretion of intestinal glands, blood flow, and smooth muscle contraction. PACAP is a well-known cytoprotective peptide with strong anti-apoptotic, anti-inflammatory, and antioxidant effects. The present review gives an overview of the intestinal protective actions of this neuropeptide. Exogenous PACAP treatment was protective in a rat model of small bowel autotransplantation. Radioimmunoassay (RIA) analysis of the intestinal tissue showed that endogenous PACAP levels gradually decreased with longer-lasting ischemic periods, prevented by PACAP addition. PACAP counteracted deleterious effects of ischemia on oxidative stress markers and cytokines. Another series of experiments investigated the role of endogenous PACAP in intestines in PACAP knockout (KO) mice. Warm ischemia–reperfusion injury and cold preservation models showed that the lack of PACAP caused a higher vulnerability against ischemic periods. Changes were more severe in PACAP KO mice at all examined time points. This finding was supported by increased levels of oxidative stress markers and decreased expression of antioxidant molecules. PACAP was proven to be protective not only in ischemic but also in inflammatory bowel diseases. A recent study showed that PACAP treatment prolonged survival of Toxoplasma gondii infected mice suffering from acute ileitis and was able to reduce the ileal expression of proinflammatory cytokines. We completed the present review with recent clinical results obtained in patients suffering from inflammatory bowel diseases. It was found that PACAP levels were altered depending on the activity, type of the disease, and antibiotic therapy, suggesting its probable role in inflammatory events of the intestine.


Reproduction | 2018

Disturbed spermatogenic signaling in pituitary adenylate cyclase activating polypeptide-deficient Mice

Dora Reglodi; S Cseh; B Somoskoi; Balazs D. Fulop; E. Szentleleky; V Szegeczki; A Kovacs; A Varga; Peter Kiss; Hitoshi Hashimoto; Andrea Tamas; A Bardosi; Sridharan Manavalan; Éva Bakó; Róza Zákány; Tamás Juhász

PACAP is a neuropeptide with diverse functions in various organs, including reproductive system. It is present in the testis in high concentrations, and in addition to the stage-specific expression within the seminiferous tubules, PACAP affects spermatogenesis and the functions of Leydig and Sertoli cells. Mice lacking endogenous PACAP show reduced fertility, but the possibility of abnormalities in spermatogenic signaling has not yet been investigated. Therefore, we performed a detailed morphological analysis of spermatozoa, sperm motility and investigated signaling pathways that play a role during spermatogenesis in knockout mice. No significant alterations were found in testicular morphology or motility of sperm in homozygous and heterozygous PACAP-deficient mice in spite of the moderately increased number of severely damaged sperms. However, we found robust changes in mRNA and/or protein expression of several factors that play an important role in spermatogenesis. Protein kinase A expression was markedly reduced, while downstream phospho-ERK and p38 were elevated in knockout animals. Expression of major transcription factors, such as Sox9 and phospho-Sox9, was decreased, while that of Sox10, as a redundant factor, was increased in PACAP-deficient mice. The reduced phospho-Sox9 expression was partly due to increased expression and activity of phosphatase PP2A in knockout mice. Targets of Sox transcription factors, such as collagen type IV, were reduced in knockout mice. In summary, our results show that lack of PACAP leads to disturbed signaling in spermatogenesis, which could be a factor responsible for reduced fertility in PACAP knockout mice, and further support the role of PACAP in reproduction.


European journal of microbiology and immunology | 2017

Intestinal microbiota changes in mice lacking pituitary adenylate cyclase activating polypeptide (PACAP) — bifidobacteria make the difference

Markus M. Heimesaat; Gernot Reifenberger; Viktoria Vicena; Anita Illés; Gabriella Horvath; Andrea Tamas; Balazs D. Fulop; Stefan Bereswill; Dora Reglodi

Pituitary adenylate cyclase activating polypetide (PACAP) constitutes a neuropeptide that is widely distributed in the host exerting essential cytoprotective properties, whereas PACAP–/– mice display increased susceptibility to distinct immunopathological conditions. The orchestrated interplay between the gut microbiota and the host is pivotal in immune homeostasis and resistance to disease. Potential pertubations of the intestinal microbiota in PACAP–/– mice, however, have not been addressed so far. For the first time, we performed a comprehensive survey of the intestinal microbiota composition in PACAP–/– and wildtype (WT) mice starting 2 weeks postpartum until 18 months of age applying quantitative culture-independent techniques. Fecal enterobacteria and enterococci were lower in PACAP–/– than WT mice aged 1 month and ≥6 months, respectively. Whereas Mouse Intestinal Bacteroides were slightly higher in PACAP–/– versus WT mice aged 1 and 6 months, this later in life held true for Bacteroides/Prevotella spp. (≥12 months) and lactobacilli (>15 months of age). Strikingly, health-beneficial bifidobacteria were virtually absent in the intestines of PACAP–/– mice, even when still breastfed. In conclusion, PACAP deficiency is accompanied by distinct changes in fecal microbiota composition with virtually absent bifidobacteria as a major hallmark that might be linked to increased susceptibility to disease.


The Journal of Pathology | 2018

Accelerated pre-senile systemic amyloidosis in PACAP knockout mice - a protective role of PACAP in age-related degenerative processes

Dora Reglodi; Adel Jungling; Rémi Longuespée; Joerg Kriegsmann; Rita Casadonte; Mark Kriegsmann; Tamás Juhász; Sebastian Bardosi; Andrea Tamas; Balazs D. Fulop; Krisztina Kovacs; Zsuzsanna Nagy; Jason Sparks; Attila Miseta; Gabriel Mazzucchelli; Hitoshi Hashimoto; Attila Bardosi

Dysregulation of neuropeptides may play an important role in aging‐induced impairments. Among them, pituitary adenylate cyclase‐activating polypeptide (PACAP) is a potent cytoprotective peptide that provides an endogenous control against a variety of tissue‐damaging stimuli. We hypothesized that the progressive decline of PACAP throughout life and the well‐known general cytoprotective effects of PACAP lead to age‐related pathophysiological changes in PACAP deficiency, supported by the increased vulnerability to various stressors of animals partially or totally lacking PACAP. Using young and aging CD1 PACAP knockout (KO) and wild type (WT) mice, we demonstrated pre‐senile amyloidosis in young PACAP KO animals and showed that senile amyloidosis appeared accelerated, more generalized, more severe, and affected more individuals. Histopathology showed age‐related systemic amyloidosis with mainly kidney, spleen, liver, skin, thyroid, intestinal, tracheal, and esophageal involvement. Mass spectrometry‐based proteomic analysis, reconfirmed with immunohistochemistry, revealed that apolipoprotein‐AIV was the main amyloid protein in the deposits together with several accompanying proteins. Although the local amyloidogenic protein expression was disturbed in KO animals, no difference was found in laboratory lipid parameters, suggesting a complex pathway leading to increased age‐related degeneration with amyloid deposits in the absence of PACAP. In spite of no marked inflammatory histological changes or blood test parameters, we detected a disturbed cytokine profile that possibly creates a pro‐inflammatory milieu favoring amyloid deposition. In summary, here we describe accelerated systemic senile amyloidosis in PACAP gene‐deficient mice, which might indicate an early aging phenomenon in this mouse strain. Thus, PACAP KO mice could serve as a model of accelerated aging with human relevance.

Collaboration


Dive into the Balazs D. Fulop's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge