Baltasar Bonillo
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Baltasar Bonillo.
Journal of the American Chemical Society | 2015
Reiner Sebastian Sprick; Jia-Xing Jiang; Baltasar Bonillo; Shijie Ren; Thanchanok Ratvijitvech; Pierre Guiglion; Martijn A. Zwijnenburg; Dave J. Adams; Andrew I. Cooper
Photocatalytic hydrogen production from water offers an abundant, clean fuel source, but it is challenging to produce photocatalysts that use the solar spectrum effectively. Many hydrogen-evolving photocatalysts are active in the ultraviolet range, but ultraviolet light accounts for only 3% of the energy available in the solar spectrum at ground level. Solid-state crystalline photocatalysts have light absorption profiles that are a discrete function of their crystalline phase and that are not always tunable. Here, we prepare a series of amorphous, microporous organic polymers with exquisite synthetic control over the optical gap in the range 1.94-2.95 eV. Specific monomer compositions give polymers that are robust and effective photocatalysts for the evolution of hydrogen from water in the presence of a sacrificial electron donor, without the apparent need for an added metal cocatalyst. Remarkably, unlike other organic systems, the best performing polymer is only photoactive under visible rather than ultraviolet irradiation.
Angewandte Chemie | 2016
Reiner Sebastian Sprick; Baltasar Bonillo; Rob Clowes; Pierre Guiglion; Nick J. Brownbill; Benjamin J. Slater; Frédéric Blanc; Martijn A. Zwijnenburg; Dave J. Adams; Andrew I. Cooper
Abstract Linear poly(p‐phenylene)s are modestly active UV photocatalysts for hydrogen production in the presence of a sacrificial electron donor. Introduction of planarized fluorene, carbazole, dibenzo[b,d]thiophene or dibenzo[b,d]thiophene sulfone units greatly enhances the H2 evolution rate. The most active dibenzo[b,d]thiophene sulfone co‐polymer has a UV photocatalytic activity that rivals TiO2, but is much more active under visible light. The dibenzo[b,d]thiophene sulfone co‐polymer has an apparent quantum yield of 2.3 % at 420 nm, as compared to 0.1 % for platinized commercial pristine carbon nitride.
Nature | 2017
Angeles Pulido; Linjiang Chen; Tomasz Kaczorowski; Daniel Holden; Marc A. Little; Samantha Y. Chong; Benjamin J. Slater; David P. McMahon; Baltasar Bonillo; Chloe J. Stackhouse; Andrew Stephenson; Christopher M. Kane; Rob Clowes; Tom Hasell; Andrew I. Cooper; Graeme M. Day
Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal–organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy–structure–function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy–structure–function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.
Angewandte Chemie | 2018
Reiner Sebastian Sprick; Baltasar Bonillo; Rob Clowes; Pierre Guiglion; Nick J. Brownbill; Benjamin J. Slater; Frédéric Blanc; Martijn A. Zwijnenburg; Dave J. Adams; Andrew I. Cooper
Linear poly(p-phenylene)s are modestly active UV photocatalysts for hydrogen production in the presence of a sacrificial electron donor. Introduction of planarized fluorene, carbazole, dibenzo[b,d]thiophene or dibenzo[b,d]thiophene sulfone units greatly enhances the H2 evolution rate. The most active dibenzo[b,d]thiophene sulfone co-polymer has a UV photocatalytic activity that rivals TiO2, but is much more active under visible light. The dibenzo[b,d]thiophene sulfone co-polymer has an apparent quantum yield of 2.3 % at 420 nm, as compared to 0.1 % for platinized commercial pristine carbon nitride.
Archive | 2017
Angeles Pulido; Linjiang Chen; Tomasz Kaczorowski; Daniel Holden; Marc A. Little; Samantha Y. Chong; Benjamin J. Slater; David P. McMahon; Baltasar Bonillo; Chloe J. Stackhouse; Andrew Stephenson; Christopher M. Kane; Rob Clowes; Tom Hasell; Andrew I. Cooper; Graeme M. Day
Related Article: Angeles Pulido, Linjiang Chen, Tomasz Kaczorowski, Daniel Holden, Marc A. Little, Samantha Y. Chong, Benjamin J. Slater, David P. McMahon, Baltasar Bonillo, Chloe J. Stackhouse, Andrew Stephenson, Christopher M. Kane, Rob Clowes, Tom Hasell, Andrew I. Cooper, Graeme M. Day|2017|Nature (London)|543|657|doi:10.1038/nature21419
Advanced Functional Materials | 2014
Ge Cheng; Baltasar Bonillo; Reiner Sebastian Sprick; Dave J. Adams; Tom Hasell; Andrew I. Cooper
Chemical Communications | 2016
Reiner Sebastian Sprick; Baltasar Bonillo; Michael Sachs; Rob Clowes; James R. Durrant; Dave J. Adams; Andrew I. Cooper
Chemistry of Materials | 2016
Baltasar Bonillo; Reiner Sebastian Sprick; Andrew I. Cooper
Archive | 2018
Reiner Sebastian Sprick; Baltasar Bonillo; Rob Clowes; Pierre Guiglion; Nick J. Brownbill; Benjamin J. Slater; Frédéric Blanc; Martijn A. Zwijnenburg; Dave J. Adams; Andrew I. Cooper
Macromolecules | 2018
Nick J. Brownbill; Reiner Sebastian Sprick; Baltasar Bonillo; Shane Pawsey; Fabien Aussenac; Alistair J. Fielding; Andrew I. Cooper; Frédéric Blanc