Rob Clowes
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rob Clowes.
Nature Materials | 2009
Tomokazu Tozawa; James T. A. Jones; Shashikala I. Swamy; Shan Jiang; Dave J. Adams; Stephen Shakespeare; Rob Clowes; Darren Bradshaw; Tom Hasell; Samantha Y. Chong; C.C. Tang; Stephen P. Thompson; Julia E. Parker; Abbie Trewin; John Bacsa; Alexandra M. Z. Slawin; Alexander Steiner; Andrew I. Cooper
Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23 m2 g(-1), respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.
Angewandte Chemie | 2011
Jia-Xing Jiang; Chao Wang; Andrea Laybourn; Tom Hasell; Rob Clowes; Yaroslav Z. Khimyak; Jianliang Xiao; Simon J. Higgins; Dave J. Adams; Andrew I. Cooper
Zwei vielseitige Strategien fur die Herstellung von Metall-organischen konjugierten mikroporosen Polymeren (MO-CMPs) mit Metallen wie Rhenium, Rhodium und Iridium werden beschrieben (siehe Beispiel). Diese Materialien vereinen in sich zwei Merkmale: eine ausgedehnte, unterbrechungsfreie elektronische Konjugation und das Vorhandensein katalytisch aktiver Metallzentren
Journal of Materials Chemistry | 2011
Claudia F. Martín; Ev Stöckel; Rob Clowes; Dave J. Adams; Andrew I. Cooper; José J. Pis; F. Rubiera; Cova Pevida
Hypercrosslinked polymers (HCPs) synthesized by copolymerisation of p-dichloroxylene (p-DCX) and 4,4′-bis(chloromethyl)-1,1′-biphenyl (BCMBP) constitute a family of low density porous materials with excellent textural development. Such polymers show microporosity and mesoporosity and exhibit Brunauer–Emmett–Teller (BET) surface areas of up to 1970 m2 g−1. The CO2 adsorption capacity of these polymers was evaluated using a thermogravimetric analyser (atmospheric pressure tests) and a high-pressure magnetic suspension balance (high pressure tests). CO2 capture capacities were related to the textural properties of the HCPs. The performance of these materials to adsorb CO2 at atmospheric pressure was characterized by maximum CO2 uptakes of 1.7 mmol g−1 (7.4 wt%) at 298 K. At higher pressures (30 bar), the polymers show CO2 uptakes of up to 13.4 mmol g−1 (59 wt%), superior to zeolite-based materials (zeolite 13X, zeolite NaX) and commercial activated carbons (BPL, Norit R). In addition, these polymers showed low isosteric heats of CO2 adsorption and good selectivity towards CO2. Hypercrosslinked polymers have potential to be applied as CO2 adsorbents in pre-combustion capture processes where high CO2 partial pressures are involved.
Angewandte Chemie | 2016
Reiner Sebastian Sprick; Baltasar Bonillo; Rob Clowes; Pierre Guiglion; Nick J. Brownbill; Benjamin J. Slater; Frédéric Blanc; Martijn A. Zwijnenburg; Dave J. Adams; Andrew I. Cooper
Abstract Linear poly(p‐phenylene)s are modestly active UV photocatalysts for hydrogen production in the presence of a sacrificial electron donor. Introduction of planarized fluorene, carbazole, dibenzo[b,d]thiophene or dibenzo[b,d]thiophene sulfone units greatly enhances the H2 evolution rate. The most active dibenzo[b,d]thiophene sulfone co‐polymer has a UV photocatalytic activity that rivals TiO2, but is much more active under visible light. The dibenzo[b,d]thiophene sulfone co‐polymer has an apparent quantum yield of 2.3 % at 420 nm, as compared to 0.1 % for platinized commercial pristine carbon nitride.
Journal of Materials Chemistry | 2013
Adham Ahmed; Mark Forster; Rob Clowes; Darren Bradshaw; Peter Myers; Haifei Zhang
Metal–organic frameworks (MOFs) have been investigated for separations including chromatography. Typically, MOF particles are directly packed into columns for the separations. The irregular shapes and wide size distributions of MOF particles have led to difficulty in column packing and low column efficiency or high back pressure. We describe here the preparation of MOF–silica microspheres as packing materials for fast and efficient liquid chromatography. Spheres-on-sphere (SOS) silica particles are prepared, modified with –COOH and –NH2 groups, and then used as support to grow HKUST-1. HKUST-1 nanocrystals and films are formed and attached firmly onto the SOS particles with adjustable porosity. The composite microspheres, showing core–shell properties, are directly packed into columns to offer separation capability of MOFs and efficient packing and support of silica microspheres. These columns show separation of toluene/ethylbenzene/styrene and toluene/o-xylene/thiophene within 1.5 minutes. Although HKUST-1 is not good for separating xylene isomers, the separation can be achieved in 5 minutes using the composite microspheres after conditioning the column with dichloromethane or toluene. Remarkably, it is observed that conditioning with DCM can change retention time and selectivity (elution order) of xylene isomers. It is also possible to produce other types of MOFs (e.g., ZIF-8) on the SOS particles, indicating the potential of this method for wider applications.
Polymer Chemistry | 2012
Andrea Laybourn; Robert Dawson; Rob Clowes; Jonathan A. Iggo; Andrew I. Cooper; Yaroslav Z. Khimyak; Dave J. Adams
Microporous organic polymers (MOPs) have been prepared via one-pot polycondensation reactions between aldehydes and amines. Primary amines were reacted with imines to produce porous polymers from A2 + B2 monomer combinations. The resulting networks exhibit BET surface areas in the range 500–600 m2 g−1. This approach opens up the possibility of synthesising MOPs using readily-available and inexpensive precursors.
Nature | 2017
Angeles Pulido; Linjiang Chen; Tomasz Kaczorowski; Daniel Holden; Marc A. Little; Samantha Y. Chong; Benjamin J. Slater; David P. McMahon; Baltasar Bonillo; Chloe J. Stackhouse; Andrew Stephenson; Christopher M. Kane; Rob Clowes; Tom Hasell; Andrew I. Cooper; Graeme M. Day
Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal–organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy–structure–function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy–structure–function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.
Chemistry: A European Journal | 2011
Tamoghna Mitra; Xiaofeng Wu; Rob Clowes; James T. A. Jones; Kim E. Jelfs; Dave J. Adams; Abbie Trewin; John Bacsa; Alexander Steiner; Andrew I. Cooper
Big softy! A soft porous molecular crystal composed of organic cages exhibits complex multistep gas sorption isotherms (see figure), analogous to those observed in soft porous metal–organic frameworks. Softness is induced by frustrated packing of the cages and structural flexibility leads to kinetic guest trapping.
Journal of the American Chemical Society | 2016
Tom Hasell; Marcin Miklitz; Andrew Stephenson; Marc A. Little; Samantha Y. Chong; Rob Clowes; Linjiang Chen; Daniel Holden; Gareth A. Tribello; Kim E. Jelfs; Andrew I. Cooper
A series of porous organic cages is examined for the selective adsorption of sulfur hexafluoride (SF6) over nitrogen. Despite lacking any metal sites, a porous cage, CC3, shows the highest SF6/N2 selectivity reported for any material at ambient temperature and pressure, which translates to real separations in a gas breakthrough column. The SF6 uptake of these materials is considerably higher than would be expected from the static pore structures. The location of SF6 within these materials is elucidated by X-ray crystallography, and it is shown that cooperative diffusion and structural rearrangements in these molecular crystals can rationalize their superior SF6/N2 selectivity.
CrystEngComm | 2010
Wenbing Yuan; Ana Lazuen Garay; Anne Pichon; Rob Clowes; Colin D. Wood; Andrew I. Cooper; Stuart L. James
A study of MOF formation by grinding together solid reactants in a ball mill reveals interesting aspects of morphology and reactivity; the product could also be activated to exhibit appreciable surface area (>1300 m2 g−1) although washing with solvent was required.