Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baltazar Becerril is active.

Publication


Featured researches published by Baltazar Becerril.


Biochimie | 2000

Peptides and genes coding for scorpion toxins that affect ion-channels.

Lourival D. Possani; Enrique Merino; Miguel Corona; Francisco Bolívar; Baltazar Becerril

Most scorpion toxins are ligand peptides that recognize and bind to integral membrane proteins known as ion-channels. To date there are at least 202 distinct sequences described, obtained from 30 different species of scorpions, 27 from the family Buthidae and three from the family Scorpionidae. Toxins that recognize potassium and chloride channels are usually from 29 to 41 amino acids long, stabilized by three or four disulfide bridges, whereas those that recognize sodium channels are longer, 60 to 76 amino acid residues, compacted by four disulfide bridges. Toxins specific for calcium channels are scarcely known and have variable amino acid lengths. The entire repertoire of toxins, independently of their specificity, was analyzed together by computational programs and a phylogenetic tree was built showing two separate branches. The K(+) and Cl(-) channel specific toxins are clustered into 14 subfamilies, whereas those of Na(+) and Ca(2+) specific toxins comprise at least 12 subfamilies. There are clear similarities among them, both in terms of primary sequence and the main three-dimensional folding pattern. A dense core formed by a short alpha helix segment and several antiparallel beta-sheet stretches, maintained by disulfide pairing, seems to be a common structural feature present in all toxins. The physiological function of these peptides is manifested by a blockage of ion passage through the channels or by a modification of the gating mechanism that controls opening and closing of the ion pore.


Trends in Pharmacological Sciences | 2003

Novel interactions between K+ channels and scorpion toxins

Ricardo C. Rodríguez de la Vega; Enrique Merino; Baltazar Becerril; Lourival D. Possani

K(+) channels are macromolecules embedded in biological membranes, where they play a key role in cellular excitability and signal transduction pathways. Knowledge of their structure should help improve our understanding of their function and lead to the design of therapeutic compounds. Most pharmacological and structural characteristics of these channels have been elucidated by using high-affinity channel blockers isolated from scorpion venoms. Recent data on the three-dimensional structures of K(+) channels and novel scorpion toxins suggest a variety of novel interacting modes of these channels and toxins, which should help increase our understanding of the K(+) channel structure-function relationship.


Journal of Molecular Biology | 2002

Phage versus Phagemid Libraries for Generation of Human Monoclonal Antibodies

David J. O'Connell; Baltazar Becerril; Arup Roy-Burman; Michael R. Daws; James D. Marks

Non-immune (naïve) phage antibody libraries have become an important source of antibodies for reagent, diagnostic, and therapeutic use. To date, reported naïve libraries have been constructed in phagemid vectors as fusions to pIII, yielding primarily single copy (monovalent) display of antibody fragments. For this work, we subcloned the single chain Fv (scFv) gene repertoire from a naïve phagemid antibody library into a true phage vector to create a multivalently displayed scFv phage library. Compared to monovalently displayed scFv, multivalent phage display resulted in improved efficiency of display as well as antibody selection. A greater number of antibodies were obtained and at earlier rounds of selection. Such increased efficiency allows the screening for binding antibodies after a single round of selection, greatly facilitating automation. Expression levels of antigen-binding scFv were also higher than from the phagemid library. In contrast, the affinities of scFv from the phage library were lower than from the phagemid library. This could be overcome by utilizing the scFv in a multivalent format, by affinity maturation, or by converting the library to monovalent display after the first round of selection.


Toxicon | 1997

Toxins and genes isolated from scorpions of the genus Tityus

Baltazar Becerril; Sergio Marangoni; Lourival D. Possani

Scorpion venoms contain a variety of low mol. wt peptides toxic to different organisms. These peptides have been intensively studied because they represent excellent models for investigating structure-function relationships and they are also fine probes for studying ionic channel functions. This review deals with the biological and chemical aspects of toxic peptides that affect Na+ or K+ channels and the cloning of the cDNAs and genes encoding the main alpha and beta neurotoxins present in the venom of the three most dangerous species of Brazilian scorpion, Tityus bahiensis, Tityus stigmurus and Tityus serrulatus, and the Venezuelan scorpion Tityus discrepans. At least 16 different peptides specific for Na+ channels and five affecting K+ channels were isolated and characterized from the venom of these scorpions. The isolation of cDNAs and genes encoding four distinct toxins has permitted the elucidation of their nucleotide sequences as well as their genomic organization. Venoms and isolated toxins from scorpions of the genus Tityus were shown to enhance the secretory activity of the pancreas. Antisera obtained against venom of T. serrulatus show cross-reactivity with other species of the Brazilian scorpions.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Antibodies to human fetal erythroid cells from a nonimmune phage antibody library

Michael A. Huie; Mei-Chi Cheung; Marcus O. Muench; Baltazar Becerril; Yuet Wai Kan; James D. Marks

The ability to isolate fetal nucleated red blood cells (NRBCs) from the maternal circulation makes possible prenatal genetic analysis without the need for diagnostic procedures that are invasive for the fetus. Such isolation requires antibodies specific to fetal NRBCs. To generate a panel of antibodies to antigens present on fetal NRBCs, a new type of nonimmune phage antibody library was generated in which multiple copies of antibody fragments are displayed on each phage. Antibody fragments specific for fetal NRBCs were isolated by extensive predepletion of the phage library on adult RBCs and white blood cells (WBCs) followed by positive selection and amplification on fetal liver erythroid cells. After two rounds of selection, 44% of the antibodies analyzed bound fetal NRBCs, with two-thirds of these showing no binding of WBCs. DNA fingerprint analysis revealed the presence of at least 16 unique antibodies. Antibody specificity was confirmed by flow cytometry, immunohistochemistry, and immunofluorescence of total fetal liver and adult RBCs and WBCs. Antibody profiling suggested the generation of antibodies to previously unknown fetal RBC antigens. We conclude that multivalent display of antibodies on phage leads to efficient selection of panels of specific antibodies to cell surface antigens. The antibodies generated to fetal RBC antigens may have clinical utility for isolating fetal NRBCs from maternal circulation for noninvasive prenatal genetic diagnosis. Some of the antibodies may also have possible therapeutic utility for erythroleukemia.


Journal of Biological Chemistry | 2006

Specific Epitopes of Domains II and III of Bacillus thuringiensis Cry1Ab Toxin Involved in the Sequential Interaction with Cadherin and Aminopeptidase-N Receptors in Manduca sexta

Isabel Gómez; Iván Arenas; Itzel Benitez; Juan Miranda-Ríos; Baltazar Becerril; Ricardo Grande; Juan Carlos Almagro; Alejandra Bravo; Mario Soberón

The Bacillus thuringiensis Cry toxins are specific to different insects. In Manduca sexta cadherin (Bt-R1) and aminopeptidase-N (APN) proteins are recognized as Cry1A receptors. Previous work showed that Cry1Ab binds to Bt-R1 promoting the formation of a pre-pore oligomer that binds to APN leading to membrane insertion. In this work we characterized the binding epitopes involved in the sequential interaction of Cry1Ab with Bt-R1 and APN. A Cry1Ab immune M13 phage repertoire was constructed using antibody gene transcripts of bone marrow or spleen from a rabbit immunized with Cry1Ab. We identified antibodies that recognize domain II loop 3 (scFvL3-3) or β16–β22 (scFvM22) in domain III. Enzyme-linked immunosorbent assay and toxin overlay binding competition assays in the presence of scFvL3-3, scFvM22, or synthetic peptides showed that domain II loop 3 is an important epitope for interaction with Bt-R1 receptor, whereas domain III β16 is involved in the interaction with APN. Both scFvL3-3 and scFvM22 lowered the toxicity of Cry1Ab to M. sexta larvae indicating that interaction with both receptors is important for in vivo toxicity. scFvL3-3 and anti-loop2 scFv (scFv73) promoted the formation of the pre-pore oligomer in contrast to scFvM22. In addition, scFvL3-3 and scFv73 preferentially recognized the monomeric toxin rather than the pre-pore suggesting a conformational change in domain II loops upon oligomerization. These results indicate for the first time that both receptor molecules participate in Cry1Ab toxin action in vivo: first the monomeric toxin binds to Bt-R1 through loops 2 and 3 of domain II promoting the formation of the pre-pore inducing some structural changes, then the pre-pore interacts with APN through β-16 of domain III promoting membrane insertion and cell death.


Journal of Proteomics | 2009

Antidotes against venomous animals: State of the art and prospectives

Gerardo Pavel Espino-Solis; Lidia Riaño-Umbarila; Baltazar Becerril; Lourival D. Possani

This communication revises the state of the art concerning antivenoms against snakes, spiders and scorpions. An overview of the historical facts that preceded the therapeutic use of antibodies is mentioned. A brief list of the major protein components of these venomous animals is revised with a short discussion of what is known on the proteomic analysis of their venoms, but the emphasis is placed on the type of antivenoms available commercially, including pertinent literature and addresses of the companies that prepare these antivenoms. The final section revises and discusses current research on the field and new potential applications that are being developed geared at obtaining new therapeutic antibodies or fragments of antibodies for neutralization of toxic components of venomous animals.


Proteomics | 2008

Proteomic analysis of the venom from the fish eating coral snake Micrurus surinamensis: Novel toxins, their function and phylogeny

Timoteo Olamendi-Portugal; Cesar V.F. Batista; Rita Restano-Cassulini; Victoria Pando; Oscar Villa-Hernandez; Alfonso Zavaleta-Martínez-Vargas; Maria C. Salas-Arruz; Ricardo C. Rodríguez de la Vega; Baltazar Becerril; Lourival D. Possani

The protein composition of the soluble venom from the South American fish‐eating coral snake Micrurus surinamensis surinamensis, here abbreviated M. surinamensis, was separated by RP‐HPLC and 2‐DE, and their components were analyzed by automatic Edman degradation, MALDI‐TOF and ESI‐MS/MS. Approximately 100 different molecules were identified. Sixty‐two components possess molecular masses between 6 and 8 kDa, are basically charged molecules, among which are cytotoxins and neurotoxins lethal to fish (Brachidanios rerio). Six new toxins (abbreviated Ms1–Ms5 and Ms11) were fully sequenced. Amino acid sequences similar to the enzymes phospholipase A2 and amino acid oxidase were identified. Over 20 additional peptides were identified by sequencing minor components of the HPLC separation and from 2‐DE gels. A functional assessment of the physiological activity of the six toxins was also performed by patch clamp using muscular nicotinic acetylcholine receptor assays. Variable degrees of blockade were observed, most of them reversible. The structural and functional data obtained were used for phylogenetic analysis, providing information on some evolutionary aspects of the venom components of this snake. This contribution increases by a factor of two the total number of α‐neurotoxins sequenced from the Micrurus genus in currently available literature.


Molecular Microbiology | 1992

Carbon regulation and the role in nature of the Escherichia coli penicillin acylase (pac) gene

Enrique Merino; Paulina Balbás; Felix Recillas; Baltazar Becerril; Fernando Valle; Francisco Bolívar

Quantitative analysis of specific pac mRNA and a lacZ fusion to the 5’‐terminal region of the pac gene demonstrated that both phenylacetic acid induction and catabolite repression by glucose are involved, at the transcriptional level, in the regulation of the pac gene. The studies presented here suggest that this regulation is also present in Escherichia coli transformed strains in which the pac gene was not originally present. Analysis of the nucleotide sequence of the 5′‐terminal region of this gene, with a statistical algorithm, confirms that the putative promoter previously proposed by our group is the most feasible within this region. We demonstrate that penicillin acylase activity can confer on E. coli the ability to use penicillin G as a metabolic substrate, by detaching the phenylacetic group which can be used as a carbon source. Based on these data, the regulation properties of the pac gene studied in this work, and the specificity profile of the penicillin acylase enzyme we suggest a role for it in E. coli as a scavenger enzyme for phenylacetylated compounds.


Toxicon | 2011

Scorpion and spider venom peptides: Gene cloning and peptide expression

Verónica Quintero-Hernández; Ernesto Ortiz; Martha Rendón-Anaya; Elisabeth F. Schwartz; Baltazar Becerril; Gerardo Corzo; Lourival D. Possani

This communication reviews most of the important findings related to venom components isolated from scorpions and spiders, mainly by means of gene cloning and expression. Rather than revising results obtained by classical biochemical studies that report structure and function of venom components, here the emphasis is placed on cloning and identification of genes present in the venomous glands of these arachnids. Aspects related to cDNA library construction, specific or random ESTs cloning, transcriptome analysis, high-throughput screening, heterologous expression and folding are briefly discussed, showing some numbers of species and components already identified, but also shortly mentioning limitations and perspectives of research for the future in this field.

Collaboration


Dive into the Baltazar Becerril's collaboration.

Top Co-Authors

Avatar

Lourival D. Possani

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Timoteo Olamendi-Portugal

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Ernesto Ortiz

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Francisco Bolívar

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Lidia Riaño-Umbarila

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Consuelo Medina García

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Fernando Z. Zamudio

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Enrique Merino

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Miguel Corona

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Verónica Quintero-Hernández

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge