Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco Bolívar is active.

Publication


Featured researches published by Francisco Bolívar.


Gene | 1977

Construction and characterization of new cloning vehicles. II. A multipurpose cloning system

Francisco Bolívar; Raymond L. Rodriguez; Patricia J. Greene; Mary C. Betlach; Herbert L. Heyneker; Herbert W. Boyer; Jorge H. Crosa; Stanley Falkow

In vitro recombination techniques were used to construct a new cloning vehicle, pBR322. This plasmid, derived from pBR313, is a relaxed replicating plasmid, does not produce and is sensitive to colicin E1, and carries resistance genes to the antibiotics ampicillin (Ap) and tetracycline (Tc). The antibiotic-resistant genes on pBR322 are not transposable. The vector pBR322 was constructed in order to have a plasmid with a single PstI site, located in the ampicillin-resistant gene (Apr), in addition to four unique restriction sites, EcoRI, HindIII, BamHI and SalI. Survival of Escherichia coli strain X1776 containing pBR313 and pBR322 as a function of thymine and diaminopimelic acid (DAP) starvation and sensitivity to bile salts was found to be equivalent to the non-plasmid containing strain. Conjugal transfer of these plasmids in bi- and triparental matings were significantly reduced or undetectable relative to the plasmid ColE1.


Gene | 1977

Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9

Francisco Bolívar; Raymond L. Rodriguez; Mary C. Betlach; Herbert W. Boyer

In vitro recombination via restriction endonucleases and the in vivo genetic translocation of the Ap resistance (Apr) gene resulted in the construction of a new cloning vehicle, the plasmid pBR313. This vector was derived from a ColE1-like plasmid and, while it does not produce colicon E1, it still retains colicin E1 immunity. The Apr and tetracycline resistance (Tcr) markers carried in pBR313 were derived from the ampicillin transposon (TnA) of pRSF2124 and pSC101 respectively. During the construction of pBR313, the TnA component was altered and the Apr gene in pBR313 can no longer be translocated. This plasmid has a molecular weight of 5.8 Mdalton and has been characterized using thirteen restriction enzymes, six of which (EcoRI, SmaI, HpaI, HindIII, BamHI and SalI) cleave the plasmid at unique restriction sites. This allows the molecular cloning of DNA fragments generated by these six enzymes. The restriction sites for the latter three enzymes, HindIII, BamHI and SalI, are located in the Tcr gene(s). Cloning DNA fragments into these sites alters the expression of the Tcr mechanisms thus providing a selection for cells carrying recombinant plasmid molecules. An enrichment method for AprTcS cells carrying recombinant plasmid molecules is described.


Gene | 1978

Construction and characterization of new cloning vehicles III. Derivatives of plasmid pBR322 carrying unique Eco RI sites for selection of Eco RI generated recombinant DNA molecules

Francisco Bolívar

In vitro recombinant DNA techniques were used to construct two new cloning vehicles, pBR324 and pBR235. These vectors, derived from plasmid pBR322, are relaxed replicating elements. Plasmid pBR324 carries the genes from pBR322 coding for resistance to the antibiotics ampicillin (Apr) and tetracycline (Tcr) and the colicin E1 structural and immunity genes derived from plasmid pMBI. Plasmid pBR325 carries the Apr and Tcr genes from pBR322 and the cloramphenicol resistance gene (Cmr) from phage P1Cm. In these plasmids the unique EcoRI restriction site present in the DNA molecule is located either in the colicin E1 structural gene (pBR324) or in the Cmr gene (pBR325). These vectors were constructed in order to have a single EcoRI site located in the middle of a structural gene which when inactivated would allow, for the easy selection of plasmid recombinant DNA molecules. These plasmids permit the molecular cloning and easy selection of EcoRI, BamHI, HindIII, PstI, HincII, SalI, (XamI), Smal, (XmaI), BglII and DpnII restriction generated DNA molecules.


Methods in Enzymology | 1979

Plasmids of Escherichia coli as cloning vectors.

Francisco Bolívar; Keith Backman

Publisher Summary This chapter discusses the plasmids of Escherichia coli ( E. coli ) as cloning vectors. The essence of molecular cloning or recombination in vitro is the joining together in vitro of two or more deoxyribonucleic acid (DNA) fragments. One fragment, called the “vector” or “vehicle,” is capable of replication in some host organism and the other(s), referred to as the “cloned or passenger fragment(s),” can be passively replicated when joined to the vector. Hybrid molecules are then put into a host organism by a process called “transformation,” and the clones that contain various arrangements of the joined fragments are isolated. The chapter discusses the procedures that can be used for the generation of DNA fragments and presents the methods for joining the DNA fragments. The chapter discusses the properties of plasmid cloning vectors of E. coli as well as the techniques that can be used to select from a population of bacterial cells the ones carrying recombinant DNA molecules of interest. The elution of DNA fragments from polyacrylamide gels is also discussed in the chapter.


Gene | 1980

Construction and characterization of new cloning vehicles IV. Deletion derivatives of pBR322 and pBR325

Xavier Soberón; Luis Covarrubias; Francisco Bolívar

In vitro recombinant DNA experiments involving restriction endonuclease fragments derived from the plasmids pBR322 and pBR325 resulted in the construction of two new cloning vehicles. One of these plasmids, designated pBR327, was obtained after an EcoRII partial digestion of pBR322. The plasmid pBR327 confers resistance to tetracycline and ampicillin, contains 3273 base pairs (bp) and therefore is 1089 bp smaller than pBR322. The other newly constructed vector, which has been designated pBR328, confers resistance to chloramphenicol as well as the two former antibiotics. This plasmid contains unique HindIII, BamHI and SalI sites in the tetracycline resistance gene, unique PvuI and PstI sites in the ampicillin resistance gene and unique EcoRI, PvuII and BalI sites in the chloramphenicol resistance gene. The pBR328 plasmid contains approx. 4900 bp.


Biochimie | 2000

Peptides and genes coding for scorpion toxins that affect ion-channels.

Lourival D. Possani; Enrique Merino; Miguel Corona; Francisco Bolívar; Baltazar Becerril

Most scorpion toxins are ligand peptides that recognize and bind to integral membrane proteins known as ion-channels. To date there are at least 202 distinct sequences described, obtained from 30 different species of scorpions, 27 from the family Buthidae and three from the family Scorpionidae. Toxins that recognize potassium and chloride channels are usually from 29 to 41 amino acids long, stabilized by three or four disulfide bridges, whereas those that recognize sodium channels are longer, 60 to 76 amino acid residues, compacted by four disulfide bridges. Toxins specific for calcium channels are scarcely known and have variable amino acid lengths. The entire repertoire of toxins, independently of their specificity, was analyzed together by computational programs and a phylogenetic tree was built showing two separate branches. The K(+) and Cl(-) channel specific toxins are clustered into 14 subfamilies, whereas those of Na(+) and Ca(2+) specific toxins comprise at least 12 subfamilies. There are clear similarities among them, both in terms of primary sequence and the main three-dimensional folding pattern. A dense core formed by a short alpha helix segment and several antiparallel beta-sheet stretches, maintained by disulfide pairing, seems to be a common structural feature present in all toxins. The physiological function of these peptides is manifested by a blockage of ion passage through the channels or by a modification of the gating mechanism that controls opening and closing of the ion pore.


Gene | 1986

Plasmid vector pBR322 and its special-purpose derivatives: a review

Paulina Balbás; Xavier Soberón; Enrique Merino; Mario Zurita; Hilda Lomelí; Fernando Valle; Noemí Flores; Francisco Bolívar

The plasmid pBR322 was one of the first EK2 multipurpose cloning vectors to be designed and constructed (ten years ago) for the efficient cloning and selection of recombinant DNA molecules in Escherichia coli. This 4363-bp DNA molecule has been extensively used as a cloning vehicle because of its simplicity and the availability of its nucleotide sequence. The widespread use of pBR322 has prompted numerous studies into its molecular structure and function. These studies revealed two features that detract from the plasmids effectiveness as a cloning vector: plasmid instability in the absence of selection and, the lack of a direct selection scheme for recombinant DNA molecules. Several vectors based on pBR322 have been constructed to overcome these limitations and to extend the vectors versatility to accommodate special cloning purposes. The objective of this review is to provide a survey of these derivative vectors and to summarize information currently available on pBR322.


Microbial Cell Factories | 2008

Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system

Karla Xadany Cabral Martínez; Ramón de Anda; Georgina Hernández; Adelfo Escalante; Guillermo Gosset; Octavio T. Ramírez; Francisco Bolívar

BackgroundEscherichia coli strains lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) are capable of coutilizing glucose and other carbon sources due to the absence of catabolite repression by glucose. In these strains, the lack of this important regulatory and transport system allows the coexistence of glycolytic and gluconeogenic pathways. Strains lacking PTS have been constructed with the goal of canalizing part of the phosphoenolpyruvate (PEP) not consumed in glucose transport to the aromatic pathway. The deletion of the ptsHIcrr operon inactivates PTS causing poor growth on this sugar; nonetheless, fast growing mutants on glucose have been isolated (PB12 strain). However, there are no reported studies concerning the growth potential of a PTS- strain in mixtures of different carbon sources to enhance the production of aromatics compounds.ResultsPB12 strain is capable of coutilizing mixtures of glucose-arabinose, glucose-gluconate and glucose-glycerol. This capacity increases its specific growth rate (μ) given that this strain metabolizes more moles of carbon source per unit time. The presence of plasmids pRW300aroGfbrand pCLtktA reduces the μ of strain PB12 in all mixtures of carbon sources, but enhances the productivity and yield of aromatic compounds, especially in the glucose-glycerol mixture, as compared to glucose or glycerol cultures. No acetate was detected in the glycerol and the glucose-glycerol batch fermentations.ConclusionDue to the lack of catabolite repression, PB12 strain carrying multicopy plasmids containing tktA and aroGfbrgenes is capable of coutilizing glucose and other carbon sources; this capacity, reduces its μ but increases the production of aromatic compounds.


Gene | 1982

Construction and characterization of new cloning vehicles VI. Plasmid pBR329, a new derivative of pBR328 lacking the 482-base-pair inverted duplication

Luis Covarrubias; Francisco Bolívar

The 4150-bp plasmid pBR329 was constructed by the the insertion into pBR327 of an 877-bp DNA fragment carrying the Cmr gene from pBR328. This new cloning vector does not contain the 482-bp inverted duplication that has been reported to be present in pBR325 and pBR328 (Prentki et al., 1981). In pBR329 the Cmr gene lacks its original promoter but is transcribed counterclockwise toward the Apr gene by a promoter located to the right of the HindIII site in the Tcr gene.


Gene | 2000

A family of removable cassettes designed to obtain antibiotic-resistance-free genomic modifications of Escherichia coli and other bacteria

Beatriz Palmeros; Jadwiga Wild; Waclaw Szybalski; Sylvie Le Borgne; Georgina Hernández-Chávez; Guillermo Gosset; Fernando Valle; Francisco Bolívar

Modifications of microbial genomes often require the use of the antibiotic-resistance (Anb(R))-encoding genes and other easily selectable markers. We have developed a set of such selectable markers (Cm(R), Km(R) and Gm(R)), which could easily be inserted into the genome and subsequently removed by using the Cre/loxP site-specific recombination system of bacteriophage P1. In this manner the same marker could be used more than once in the same background, while the resulting strain could or would remain Anb(R) marker-free. Three plasmids were constructed, each containing a cassette consisting of the Cm(R), Km(R), or Gm(R) gene flanked by two parallel loxP sites and two polylinkers (MCS). To test insertion and excision, cassettes were inserted into the lacZ or galE genes carried on an origamma/pir-dependent suicide plasmid, which contained a dominant Sm(R) gene. The cassettes were crossed into the E. coli genome by homologous recombination (allelic exchange), in a manner analogous to that described by Pósfai et al. [Nucl. Acids Res. 22 (1994) 2392-2398], selecting for the Cm(R), Km(R), or Gm(R), for the LacZ(-) or GalE(-) and for the Sm(S) phenotypes (the latter to assure allelic exchange rather than insertion of the entire plasmid). When required, after selecting the strain with the desired modification, the Cm(R), Km(R), or Gm(R) marker was excised by supplying the Cre function. Cre was provided by the thermosensitive plasmid pJW168, which was transformed into the Anb(R) host at 30 degrees C, and was subsequently eliminated at 42 degrees C. Thus the Anb(R) marker was removed, whereas the lacZ or galE gene remained interrupted by the retained loxP site.

Collaboration


Dive into the Francisco Bolívar's collaboration.

Top Co-Authors

Avatar

Guillermo Gosset

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Noemí Flores

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alfredo Martinez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Adelfo Escalante

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Ramón de Anda

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Octavio T. Ramírez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Enrique Merino

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Georgina Hernández-Chávez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Paulina Balbás

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge