Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Balvinder S. Vig is active.

Publication


Featured researches published by Balvinder S. Vig.


Molecular Cancer Therapeutics | 2005

Targeted delivery to PEPT1-overexpressing cells: Acidic, basic, and secondary floxuridine amino acid ester prodrugs

Christopher P. Landowski; Balvinder S. Vig; Xueqin Song; Gordon L. Amidon

Floxuridine is a clinically proven anticancer agent in the treatment of metastatic colon carcinomas and hepatic metastases. However, prodrug strategies may be necessary to improve its physiochemical properties and selectivity and to reduce undesirable toxicity effects. Previous studies with amino acid ester prodrugs of nucleoside drugs targeted to the PEPT1 transporter coupled with recent findings of the functional expression of the PEPT1 oligopeptide transporter in pancreatic adenocarcinoma cell lines suggest the potential of PEPT1 as therapeutic targets for cancer treatment. In this report, we show the feasibility of achieving enhanced transport and selective antiproliferative action of amino acid ester prodrugs of floxuridine in cell systems overexpressing PEPT1. All prodrugs exhibited affinity for PEPT1 (IC50, 1.1–2.3 mmol/L). However, only the prolyl and lysyl prodrugs exhibited enhanced uptake (2- to 8-fold) with HeLa/PEPT1 cells compared with HeLa cells, suggesting that the aspartyl prodrugs are PEPT1 inhibitors. The selective growth inhibition of Madine-Darby canine kidney (MDCK)/PEPT1 cells over MDCK cells by the prodrugs was consistent with the extent of their PEPT1-mediated transport. All ester prodrugs hydrolyzed to floxuridine fastest in Caco-2 cell and MDCK homogenates and slower in human plasma and were most chemically stable in pH 6.0 buffer. Prolyl and lysyl prodrugs were relatively less stable compared with aspartyl prodrugs in buffers and in cell homogenates. The results suggest that optimal design for targeted delivery would be possible by combining both stability and transport characteristics afforded by the promoiety.


Pharmaceutical Research | 2003

Amino Acid Ester Prodrugs of Floxuridine: Synthesis and Effects of Structure, Stereochemistry, and Site of Esterification on the Rate of Hydrolysis

Balvinder S. Vig; Philip J. Lorenzi; Sachin Mittal; Christopher P. Landowski; Ho Chul Shin; Henry I. Mosberg; John M. Hilfinger; Gordon L. Amidon

AbstractPurpose. To synthesize amino acid ester prodrugs of floxuridine (FUdR) and to investigate the effects of structure, stereochemistry, and site of esterification of promoiety on the rates of hydrolysis of these prodrugs in Caco-2 cell homogenates. Methods. Amino acid ester prodrugs of FUdR were synthesized using established procedures. The kinetics of hydrolysis of prodrugs was evaluated in human adenocarcinoma cell line (Caco-2) homogenates and pH 7.4 phosphate buffer. Results. 3′-Monoester, 5′-monoester, and 3′,5′-diester prodrugs of FUdR utilizing proline, L-valine, D-valine, L-phenylalanine, and D-phenylalanine as promoieties were synthesized and characterized. In Caco-2 cell homogenates, the L-amino acid ester prodrugs hydrolyzed 10 to 75 times faster than the corresponding D-amino acid ester prodrugs. Pro and Phe ester prodrugs hydrolyzed much faster (3- to 30-fold) than the corresponding Val ester prodrugs. Further, the 5′-monoester prodrugs hydrolyzed significantly faster (3-fold) than the 3′,5′-diester prodrugs. Conclusions. Novel amino acid ester prodrugs of FUdR were successfully synthesized. The results presented here clearly demonstrate that the rate of FUdR prodrug activation in Caco-2 cell homogenates is affected by the structure, stereochemistry, and site of esterification of the promoiety. Finally, the 5′-Val and 5′-Phe monoesters exhibited desirable characteristics such as good solution stability and relatively fast enzymatic conversion rates.


Advanced Drug Delivery Reviews | 2013

Amino acids as promoieties in prodrug design and development

Balvinder S. Vig; Kristiina M. Huttunen; Krista Laine; Jarkko Rautio

Prodrugs are biologically inactive agents that upon biotransformation in vivo result in active drug molecules. Since prodrugs might alter the tissue distribution, efficacy and the toxicity of the parent drug, prodrug design should be considered at the early stages of preclinical development. In this regard, natural and synthetic amino acids offer wide structural diversity and physicochemical properties. This review covers the use of amino acid prodrugs to improve poor solubility, poor permeability, sustained release, intravenous delivery, drug targeting, and metabolic stability of the parent drug. In addition, practical considerations and challenges associated with the development of amino acid prodrugs are also covered.


Molecules | 2008

Enhanced Absorption and Growth Inhibition with Amino Acid Monoester Prodrugs of Floxuridine by Targeting hPEPT1 Transporters

Yasuhiro Tsume; Balvinder S. Vig; Jing Sun; Christopher P. Landowski; John M. Hilfinger; Gordon L. Amidon

A series of amino acid monoester prodrugs of floxuridine was synthesized and evaluated for the improvement of oral bioavailability and the feasibility of target drug delivery via oligopeptide transporters. All floxuridine 5′-amino acid monoester prodrugs exhibited PEPT1 affinity, with inhibition coefficients of Gly-Sar uptake (IC50) ranging from 0.7 – 2.3 mM in Caco-2 and 2.0 – 4.8 mM in AsPC-1 cells, while that of floxuridine was 7.3 mM and 6.3 mM, respectively. Caco-2 membrane permeabilities of floxuridine prodrugs (1.01 – 5.31 x 10-6 cm/sec) and floxuridine (0.48 x 10-6 cm/sec) were much higher than that of 5-FU (0.038 x 10-6 cm/sec). MDCK cells stably transfected with the human oligopeptide transporter PEPT1 (MDCK/hPEPT1) exhibited enhanced cell growth inhibition in the presence of the prodrugs. This prodrug strategy offers great potential, not only for increased drug absorption but also for improved tumor selectivity and drug efficacy.


Molecular Pharmaceutics | 2013

Assessing the Risk of pH-Dependent Absorption for New Molecular Entities: A Novel in Vitro Dissolution Test, Physicochemical Analysis, and Risk Assessment Strategy

Neil R. Mathias; Yan Xu; Dhaval Patel; Michael Grass; Brett Caldwell; Casey Jager; Jim Mullin; Luke Hansen; John R. Crison; Amy Saari; Christoph Gesenberg; John Morrison; Balvinder S. Vig; Krishnaswamy Raghavan

Weak base therapeutic agents can show reduced absorption or large pharmacokinetic variability when coadministered with pH-modifying agents, or in achlorhydria disease states, due to reduced dissolution rate and/or solubility at high gastric pH. This is often referred to as pH-effect. The goal of this study was to understand why some drugs exhibit a stronger pH-effect than others. To study this, an API-sparing, two-stage, in vitro microdissolution test was developed to generate drug dissolution, supersaturation, and precipitation kinetic data under conditions that mimic the dynamic pH changes in the gastrointestinal tract. In vitro dissolution was assessed for a chemically diverse set of compounds under high pH and low pH, analogous to elevated and normal gastric pH conditions observed in pH-modifier cotreated and untreated subjects, respectively. Represented as a ratio between the conditions, the in vitro pH-effect correlated linearly with clinical pH-effect based on the Cmax ratio and in a non-linear relationship based on AUC ratio. Additionally, several in silico approaches that use the in vitro dissolution data were found to be reasonably predictive of the clinical pH-effect. To explore the hypothesis that physicochemical properties are predictors of clinical pH-effect, statistical correlation analyses were conducted using linear sequential feature selection and partial least-squares regression. Physicochemical parameters did not show statistically significant linear correlations to clinical pH-effect for this data set, which highlights the complexity and poorly understood nature of the interplay between parameters. Finally, a strategy is proposed for implementation early in clinical development, to systematically assess the risk of clinical pH-effect for new molecular entities that integrates physicochemical analysis and in vitro, in vivo and in silico methods.


International Journal of Pharmaceutics | 2014

Application of imaging based tools for the characterisation of hollow spray dried amorphous dispersion particles.

John F. Gamble; Ana P. Ferreira; Mike Tobyn; Lynn M. DiMemmo; Kyle Martin; Neil R. Mathias; Richard L. Schild; Balvinder S. Vig; John M. Baumann; Stacy Parks; Mike Ashton

The aim of this study was to investigate novel approaches to determine spray dried dispersion (SDD) specific particle characteristics through the use of imaging based technologies. The work demonstrates approaches that can be applied in order to access quantitative approximations for powder characteristics for hollow particles, such as SDD. Cryo-SEM has been used to measure the solid volume fraction and/or particle density of SDD particles. Application of this data to understand the impact of spray drying process conditions on SDD powder properties, and their impact on processability and final dosage form quality were investigated. The use of data from a Morphologi G3 image based particle characterisation system was also examined in order to explain both the propensity and extent of attrition within a series of SDD samples, and also demonstrate the use of light transmission data to assess the relative wall thickness of SDD particles. Such approaches demonstrate a means to access potentially useful information that can be linked to important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as bulk density, may enable a better understanding of such materials and their impact on downstream processability and final dosage form acceptability.


Biochemical and Biophysical Research Communications | 2003

Functional expression and characterization of a sodium-dependent nucleoside transporter hCNT2 cloned from human duodenum☆

Ho Chul Shin; Christopher P. Landowski; Duxin Sun; Balvinder S. Vig; Insook Kim; Sachin Mittal; Majella Lane; Gustavo R. Rosania; John C. Drach; Gordon L. Amidon

We have cloned and functionally expressed a sodium-dependent human nucleoside transporter, hCNT2, from a CNS cancer cell line U251. Our cDNA clone of hCNT2 had the same predicted amino acid sequence as the previously cloned hCNT2 transporter. Of the several cell lines studied, the best hCNT2 transport function was obtained when transiently expressed in U251 cells. Na(+)-dependent uptake of [3H]inosine in U251 cells transiently expressing hCNT2 was 50-fold greater than that in non-transfected cells, and uptake in Na(+)-containing medium was approximately 30-fold higher than that at Na(+)-free condition. The hCNT2 displayed saturable uptake of [3H]inosine with K(m) of 12.8 microM and V(max) of 6.66 pmol/mg protein/5 min. Uptake of [3H]inosine was significantly inhibited by the purine nucleoside drugs dideoxyinosine and cladribine, but not by acyclic nucleosides including acyclovir, ganciclovir, and their prodrugs valacyclovir and valganciclovir. This indicates that the closed ribose ring is important for binding of nucleoside drugs to hCNT2. Among several pyrimidine nucleosides, hCNT2 favorably interacted with the uridine analogue floxuridine. Interestingly, we found that benzimidazole analogues, including maribavir, 5,6-dichloro-2-bromo-1-beta-D-ribofuranosylbenzimidazole (BDCRB), and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), were strong inhibitors of inosine transport, even though they have a significantly different heterocycle structure compared to a typical purine ring. As measured by GeneChip arrays, mRNA expression of hCNT2 in human duodenum was 15-fold greater than that of hCNT1 or hENT2. Further, the rCNT2 expression in rat duodenum was 20-fold higher than rCNT1, rENT1 or rENT2. This suggests that hCNT2 (and rCNT2) may have a significant role in uptake of nucleoside drugs from the intestine and is a potential transporter target for the development of nucleoside and nucleoside-mimetic drugs.


Pharmaceutical Research | 2007

Proline Prodrug of Melphalan Targeted to Prolidase, a Prodrug Activating Enzyme Overexpressed in Melanoma

Sachin Mittal; Xueqin Song; Balvinder S. Vig; Gordon L. Amidon

PurposeTo determine the bioactivation and uptake of prolidase-targeted proline prodrugs of melphalan in six cancer cell lines with variable prolidase expression and to evaluate prolidase-dependence of prodrug cytotoxicity in the cell lines compared to that of the parent drug, melphalan.Materials and MethodsHydrolysis, cell uptake, and cell proliferation studies of melphalan and the L- and D-proline prodrugs of melphalan, prophalan-L and prophalan-D, respectively, were conducted in the cancer cell lines using established procedures.ResultsThe bioactivation of prophalan-L in the cancer cell lines exhibited high correlation with their prolidase expression levels (r2 = 0.86). There were no significant differences in uptake of melphalan and its prodrugs. The cytotoxicity of prophalan-L (GI50) in cancer cells also showed high correlation with prolidase expression (r2 = 0.88), while prophalan-D was ineffective at comparable concentrations. A prolidase targeting index (ratio of melphalan to prophalan-L cytotoxicity normalized to their uptake) was computed and showed high correlation with prolidase expression (r2 = 0.82).ConclusionsThe data corroborates the specificity of prophalan-L activation by prolidase as well as prolidase-targeted cytotoxicity of prophalan-L in cancer cell lines. Hence, prophalan-L, a stable prodrug of melphalan, exhibits potential for efficiently targeting melanoma with reduced systemic toxicity.


Archives of Pharmacal Research | 2007

Peptide transporter substrate identification during permeability screening in drug discovery : Comparison of transfected MDCK-hPepT1 cells to Caco-2 cells

Praveen Balimane; Saeho Chong; Karishma Patel; Yong Quan; Julita Timoszyk; Yong-Hae Han; Bonnie Wang; Balvinder S. Vig; Teresa N. Faria

The purpose of this study was to investigate the utility of stably transfected MDCK-hPepT1 cells for identifying peptide transporter substrates in early drug discovery and compare the characteristics of this cell line with Caco-2 cells. MDCK-hPepT1, MDCK-mock, and Caco-2 cells grown to confluence on 24-well Transwell were used for this study. Expression levels of different transporter proteins (PepT1, PepT2, P-gp) in these cell lines were assessed by qRT-PCR. Permeability studies were conducted in parallel in all the cells with a diverse set of peptide substrates using the optimized experimental condition: 100 μM, apical pH 6.0, basolateral pH 7.4, 2 hr incubation at 37°C. Permeability studies were also conducted with classical P-gp substrates (tested in bi-directional mode) and paracellularly absorbed probes to investigate the differences between the cell lines. As expected, MDCK-hPepT1 cells express significantly higher level of PepT1 mRNA compared to both Caco-2 and MDCK-mock cells. Efflux transporter, P-gp, was expressed adequately in all the cell lines. Permeability studies demonstrated that classical peptide substrates had significantly higher permeability in stably transfected MDCK-hPepT1 cells compared to MDCK-mock and Caco-2 cells. The transfected MDCK-hPepT1 cells were qualitatively similar to Caco-2 cells with respect to functional P-gp efflux activity and paracellular pore activity. Stably transfected MDCK-hPepT1 cells have been demonstrated as a viable alternative to Caco-2 cells for estimating the human absorption potential of peptide transporter substrates. These cells behave similar to Caco-2 cells with regards to P-gp efflux and paracellular pore activity but demonstrate greater predictability of absorption values for classical peptide substrates (for which Caco-2 cells under-estimate oral absorption).


Pharmaceutics | 2012

Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions

Yong Quan; Yisheng Jin; Teresa N. Faria; Charles A. Tilford; Aiqing He; Doris A. Wall; Ronald L. Smith; Balvinder S. Vig

The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells.

Collaboration


Dive into the Balvinder S. Vig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xueqin Song

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Insook Kim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge