Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Drach is active.

Publication


Featured researches published by John C. Drach.


Antimicrobial Agents and Chemotherapy | 2002

Potent and Selective Inhibition of Human Cytomegalovirus Replication by 1263W94, a Benzimidazole l-Riboside with a Unique Mode of Action

Karen K. Biron; Robert J. Harvey; Stanley C. Chamberlain; Steven S. Good; Albert A. Smith; Michelle G. Davis; Christine L. Talarico; Wayne H. Miller; Robert Ferris; Ronna E. Dornsife; Sylvia C. Stanat; John C. Drach; Leroy B. Townsend; George Walter Koszalka

ABSTRACT Benzimidazole nucleosides have been shown to be potent inhibitors of human cytomegalovirus (HCMV) replication in vitro. As part of the exploration of structure-activity relationships within this series, we synthesized the 2-isopropylamino derivative (3322W93) of 1H-β-d-ribofuranoside-2-bromo-5,6-dichlorobenzimidazole (BDCRB) and the biologically unnatural l-sugars corresponding to both compounds. One of the l derivatives, 1H-β-l-ribofuranoside-2-isopropylamino-5,6-dichlorobenzimidazole (1263W94), showed significant antiviral potency in vitro against both laboratory HCMV strains and clinical HCMV isolates, including those resistant to ganciclovir (GCV), foscarnet, and BDCRB. 1263W94 inhibited viral replication in a dose-dependent manner, with a mean 50% inhibitory concentration (IC50) of 0.12 ± 0.01 μM compared to a mean IC50 for GCV of 0.53 ± 0.04 μM, as measured by a multicycle DNA hybridization assay. In a single replication cycle, 1263W94 treatment reduced viral DNA synthesis, as well as overall virus yield. HCMV mutants resistant to 1263W94 were isolated, establishing that the target of 1263W94 was a viral gene product. The resistance mutation was mapped to the UL97 open reading frame. The pUL97 protein kinase was strongly inhibited by 1263W94, with 50% inhibition occurring at 3 nM. Although HCMV DNA synthesis was inhibited by 1263W94, the inhibition was not mediated by the inhibition of viral DNA polymerase. The parent benzimidazole d-riboside BDCRB inhibits viral DNA maturation and processing, whereas 1263W94 does not. The mechanism of the antiviral effect of l-riboside 1263W94 is thus distinct from those of GCV and of BDCRB. In summary, 1263W94 inhibits viral replication by a novel mechanism that is not yet completely understood.


Antimicrobial Agents and Chemotherapy | 2003

In Vitro Activities of Benzimidazole d- and l-Ribonucleosides against Herpesviruses

Stephanie L. Williams; Caroll B. Hartline; Nicole L. Kushner; Emma A. Harden; Deborah J. Bidanset; John C. Drach; Leroy B. Townsend; Mark R. Underwood; Karen K. Biron; Earl R. Kern

ABSTRACT Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), and human herpesvirus 8 (HHV-8) are responsible for a number of clinical manifestations in both normal and immunocompromised individuals. The parent benzimidazole ribonucleosides evaluated in this series, 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl)benzimidazole (BDCRB) and maribavir (1263W94), are potent and selective inhibitors of human CMV replication. These nucleosides act by two different mechanisms. BDCRB blocks the processing and maturation of viral DNA, whereas 1263W94 inhibits the viral enzyme pUL97 and interferes with DNA synthesis. In the present study, we have evaluated the in vitro antiviral activity of BDCRB, an analog, GW275175X (175X), and 1263W94 against the replication of HSV-1, HSV-2, VZV, CMV, EBV, HHV-6, and HHV-8. By using various methodologies, significant activity was observed against human CMV and EBV but not against HSV-1, HSV-2, VZV, HHV-6, or HHV-8. Plaque reduction assays performed on a variety of laboratory and clinical isolates of human CMV indicated that all strains, including those resistant to ganciclovir (GCV) and foscarnet, were sensitive to all three benzimidazole ribonucleosides, with mean 50% effective concentration values of about 1 to 5 μM compared to that of GCV at 6 μM. The toxicity of these compounds in tissue culture cells appeared to be similar to that observed with GCV. These results demonstrate that the benzimidazole ribonucleosides are active against human CMV and EBV and suggest that they may be useful for the treatment of infections caused by these herpesviruses.


Antiviral Research | 1986

Thiosemicarbazones of 2-acetylpyridine, 2-acetylquinoline, 1-acetylisoquinoline, and related compounds as inhibitors of herpes simplex virus in vitro and in a cutaneous herpes guinea pig model

Charles Shipman; Sandra H. Smith; John C. Drach; Daniel L. Klayman

A series of 111 thiosemicarbazones of 2-acetylpyridine, 2-acetylquinoline, 1-acetylisoquinoline, and related compounds were evaluated as inhibitors of herpes simplex virus in vitro and in a cutaneous herpes guinea pig model. All derivatives tested were potent inhibitors of virus replication with mean 50% inhibitory concentrations of 1.1 micrograms/ml for both type 1 and 2 herpes simplex virus. Inhibitory concentrations for cellular protein and DNA synthesis were considerably higher for many compounds resulting in in vitro therapeutic indices ranging from greater than 100 (highly selective) to less than 1 (negatively selective). All compounds were tested for dermal toxicity following topical administration of saturated solutions in 1,3-butanediol to the shaved, depilated skin of guinea pigs. Approximately 50% of the compounds produced slight to no dermal toxicity whereas the remaining compounds produced moderate to severe dermal toxicity. 28 compounds were evaluated in the cutaneous herpes guinea pig model against herpes simplex virus type 1. A number of N4-monosubstituted 2-acetylpyridine thiosemicarbazones produced highly significant reductions in days to healing and lesion score without producing untoward dermal toxicity. Structure-activity relationships revealed that a reduction of the azomethine bond in the molecule (i.e., conversion of a thiosemicarbazone to a thiosemicarbazide) greatly diminished dermal toxicity apparently without producing a proportional decrease in antiviral activity.


Journal of Virological Methods | 1990

A microtiter virus yield reduction assay for the evaluation of antiviral compounds against human cytomegalovirus and herpes simplex virus

Mark N. Prichard; Steven R. Turk; Lisa A. Coleman; Sandra L. Engelhardt; Charles Shipman; John C. Drach

Although the virus yield reduction assay is a powerful technique for evaluating the efficacy of antiviral compounds, it is not routinely utilized due to its labor-intensive nature. This procedure was modified, developed, thereby reducing greatly the time and effort required to perform yield reduction assays. Monolayer cultures of mammalian cells were grown in 96-well microtiter tissue culture plates and infected with virus. Test compounds were added and serially diluted directly with the plates. Following a cycle of virus replication, culture lysates were made and serially diluted in a separate set of uninfected cultures grown in microtiter plates. The cultures were incubated, plaques were enumerated in wells containing 5 to 20 plaques, and virus titers were calculated. To illustrate the use of the assay the known antiviral drugs acyclovir and ganciclovir were evaluated using this procedure. Ninety percent inhibitory concentrations for the respective drugs were 3 microM and 0.7 microM against herpes simplex virus type 1 and 60 microM and 1 microM against human cytomegalovirus.


Antimicrobial Agents and Chemotherapy | 1976

Antiviral Activity of Arabinosyladenine and Arabinosylhypoxanthine in Herpes Simplex Virus-Infected KB Cells: Selective Inhibition of Viral Deoxyribonucleic Acid Synthesis in Synchronized Suspension Cultures

Charles Shipman; Sandra H. Smith; Roger H. Carlson; John C. Drach

The drug 9-β-d-arabinofuranosyladenine (ara-A) significantly suppressed the formation of herpes simplex virus type 1-induced syncytia in BHK-21/4 cells at concentrations as low as 0.1 μg/ml. Optimal activity was noted when the drug was added before initiation of viral deoxyribonucleic acid (DNA) synthesis (3.5 h postinfection). The deaminated derivative of ara-A, 9-β-d-arabinofuranosylhypoxanthine (ara-H), was at least 10 times less effective in suppressing the development of herpes simplex virus-induced syncytia. The replication of herpes simplex virus was measured by assaying fluids and cells from infected drug-treated cultures by using a plaque production technique. Ara-A at drug levels of >10 < 32 μg/ml completely blocked the replication of infectious virus particles. Ara-H was less effective than ara-A in reducing the replication of virions. Rates of host and viral DNA synthesis were monitored by pulse labeling herpes simplex virus-infected synchronized KB cells with [3H]thymidine and subsequently separating viral from cellular DNA in CsCl density gradients. During synthetic (S) phase, ara-A or ara-H at concentrations ranging from 3.2 to 32 μg/ml selectively inhibited viral DNA synthesis. At 3.2 μg of ara-A per ml, viral DNA synthesis was reduced 74% although total cellular DNA synthesis was unaffected. Increasing concentrations of ara-A produced increasing temporal delays in the maximal rate of host DNA synthesis. This time shift was not observed in cells treated with ara-H.


Antimicrobial Agents and Chemotherapy | 1981

Antiviral Activity of 2-Acetylpyridine Thiosemicarbazones Against Herpes Simplex Virus

Charles Shipman; Sandra H. Smith; John C. Drach; Daniel L. Klayman

2-Acetylpyridine thiosemicarbazone derivatives inhibited the replication of herpes simplex virus types 1 and 2 to a greater extent than cellular deoxyribonucleic acid or protein synthesis.


Journal of Virology | 2003

Resistance of Human Cytomegalovirus to the Benzimidazole l-Ribonucleoside Maribavir Maps to UL27

Gloria Komazin; Roger G. Ptak; Brian T. Emmer; Leroy B. Townsend; John C. Drach

ABSTRACT 1-(β-d-Ribofuranosyl)-2,5,6-trichlorobenzimidazole (TCRB) and its 2-bromo analog, BDCRB, are potent and selective inhibitors of human cytomegalovirus (HCMV) DNA processing and packaging. Since they are readily metabolized in vivo, analogs were synthesized to improve biostability. One of these, 1-(β-l-ribofuranosyl)-2-isopropylamino-5,6-dichlorobenzimidazole (1263W94; maribavir), inhibits viral DNA synthesis and nuclear egress. Resistance to maribavir was mapped to UL97, and this viral kinase was shown to be a direct target of maribavir. In the present study, an HCMV strain resistant to TCRB and BDCRB was passaged in increasing concentrations of maribavir, and resistant virus was isolated. This strain (G2) grew at the same rate as the wild-type virus and was resistant to both BDCRB and maribavir. Resistance to BDCRB was expected, because the parent strain from which G2 was isolated was resistant due to known mutations in UL56 and UL89. However, no mutations were found in UL97 or other relevant open reading frames that could explain resistance to maribavir. Because sequencing of selected HCMV genes did not identify the resistance mutation, a cosmid library was made from G2, and a series of recombinant G2 wild-type viruses were constructed. Testing the recombinants for sensitivity to maribavir narrowed the locus of resistance to genes UL26 to UL32. Sequencing identified a single coding mutation in ORF UL27 (Leu335Pro) as the one responsible for resistance to maribavir. These results establish that UL27 is either directly or indirectly involved in the mechanism of action of maribavir. They also suggest that UL27 could play a role in HCMV DNA synthesis or egress of HCMV particles from the nucleus.


Antimicrobial Agents and Chemotherapy | 2002

Preclinical and Toxicology Studies of 1263W94, a Potent and Selective Inhibitor of Human Cytomegalovirus Replication

George Walter Koszalka; Nelson W. Johnson; Steven S. Good; Leslie Boyd; Stanley C. Chamberlain; Leroy B. Townsend; John C. Drach; Karen K. Biron

ABSTRACT 1263W94 is a novel benzimidazole compound being developed for treatment of human cytomegalovirus infection. No adverse pharmacological effects were demonstrated in safety pharmacology studies with 1263W94. The minimal-effect dose in a 1-month rat study was 100 mg/kg/day, and the no-effect dose in a 1-month monkey study was 180 mg/kg/day. Toxic effects were limited to increases in liver weights, neutrophils, and monocytes at higher doses in female rats. 1263W94 was not genotoxic in the Ames or micronucleus assays. In the mouse lymphoma assay, 1263W94 was mutagenic in the absence of the rat liver S-9 metabolic activation system, with equivocal results in the presence of the S-9 mix. Mean oral bioavailability of 1263W94 was >90% in rats and ∼50% in monkeys. Clearance in rats and monkeys was primarily by biliary secretion, with evidence of enterohepatic recirculation. In 1-month studies in rats and monkeys, mean peak concentrations and exposures to 1263W94 increased in near proportion to dose. Metabolism of 1263W94 to its primary metabolite, an N-dealkylated analog, appeared to be mediated via the isozyme CYP3A4 in humans. 1263W94 was primarily distributed in the gastrointestinal tract of rats but did not cross the blood-brain barrier. In monkeys, 1263W94 levels in the brain, cerebrospinal fluid, and vitreous humor ranged from 4 to 20%, 1 to 2%, and <1%, of corresponding concentrations in plasma, respectively. The high level of binding by 1263W94 to human plasma proteins (primarily albumin) was readily reversible, with less protein binding seen in the monkey, rat, and mouse. Results of these studies demonstrate a favorable safety profile for 1263W94.


Antiviral Chemistry & Chemotherapy | 1998

2-hydroxymethylcyclopropylidenemethylpurines and -pyrimidines as antiviral agents

Jiri Zemlicka; Yao-Ling Qiu; John C. Drach; Roger G. Ptak

Several Z- and E-methylenecyclopropane nucleoside analogues were synthesized and evaluated for antiviral activity. Reaction of the Z- and E-2-amino-6-chloropurine methylenecyclopropanes with ammonia or cyclopropylamine gave 2,6-diamino or 2-amino-6-cyclopropylamino analogues. Alkylation elimination of N4-acetylcytosine with ethyl Z- and E-2-bromo-2-bromomethylcyclopropane-1-carboxylates gave a mixture of the Z-and E-methylenecyclopropane derivatives of cytosine. Reduction furnished a mixture of syncytol and the E isomer. Benzoylation led to the respective N4-benzoyl derivatives which were separated by chromatography. Debenzoylation afforded pure syncytol and the E isomer. Alkylation of 2,4-bis-O-trimethylsilylthymine with ethyl Z- and E-2-bromo-2-bromomethylcyclopropane-1-carboxylates gave the corresponding Z- and E-1-bromo-cyclopropylmethylderivatives of thymine. Base-catalysed elimination of HBr gave Z- and E-methylenecyclopropane carboxylic esters. Reduction furnished, after chromatographic separation, synthymol and the E isomer. The Z/E isomeric assignment of the obtained products followed from 1H NMR spectroscopy. The methylenecyclopropane analogues were tested for antiviral activity in vitro against human and murine cytomegalovirus (HCMV, MCMV), Epstein–Barr virus (EBV), varicella zoster virus (VZV), hepatitis B virus (HBV), herpes simplex virus types 1 and 2 (HSV-1, HSV-2), human herpesvirus 6 (HHV-6) and human immunodeficiency virus type 1 (HIV-1). The Z-2-amino-6-cyclopropylaminopurine analogue was the most effective agent against HCMV (EC50 or EC90 0.4–2 μM) followed by syncytol and the Z-2,6-diaminopurine analogues (EC50 or EC90 3.4–29 and 11–24 μM, respectively). The latter compound was also a strong inhibitor of MCMV (EC50 0.6 μM). Syncytol was the most potent against EBV (EC50 <0.41 and 2.5 μM) followed by the Z-2,6-diaminopurine (EC50 1.5 and 6.9 μM) and the Z-2-amino-6-cyclopropylaminopurine derivative (EC50 11.8 μM). Syncytol was also most effective against VZV (EC50 3.6 μM). Activity against HSV-1, HSV-2 and HHV-6 was generally lower; synthymol had an EC50 of 2 μM against HSV-1 (ELISA) and 1.3 μM against EBV in Daudi cells but was inactive in other assays. The 2-amino-6-cyclopropylamino analogue displayed EC50 values between 215 and >74 μM in HSV-1 and HSV-2 assays. 2-Amino-6-cyclopropylaminopurine and 2,6-diaminopurine derivatives were effective against HBV (EC50 2 and 10 μM, respectively), whereas none of the analogues inhibited HIV-1 at a higher virus load. Syncytol and the E isomer were equipotent against EBV in Daudi cells but the E isomer was much less effective in DNA hybridization assays. The E-2,6-diaminopurine analogue and E isomer of synthymol were devoid of antiviral activity.


Journal of Virology | 2005

Interaction of the Putative Human Cytomegalovirus Portal Protein pUL104 with the Large Terminase Subunit pUL56 and Its Inhibition by Benzimidazole-d-Ribonucleosides

Alexandra Dittmer; John C. Drach; Leroy B. Townsend; Anke Fischer; Elke Bogner

ABSTRACT Herpesvirus DNA replication leads to unit length genomes that are translocated into preformed procapsids through a unique portal vertex. The translocation is performed by the terminase that cleaves the DNA and powers the insertion by its ATPase activity. Recently, we demonstrated that the putative human cytomegalovirus (HCMV) portal protein, pUL104, also forms high-molecular-weight complexes. Analyses now have been performed to determine the intracellular localization and identification of interaction partners of pUL104. In infected cells, HCMV pUL104 was found to be predominantly localized throughout the nucleus as well as in cytoplasmic clusters at late times of infection. The latter localization was abolished by phosphonoacetic acid, an inhibitor of viral DNA replication. Immunofluorescence revealed that pUL104 colocalized with pUL56, the large subunit of the HCMV terminase. Specific association of in vitro translated pUL104 with the carboxy-terminal half of GST-UL56C was detected. By using coimmunoprecipitations a direct interaction with pUL56 was confirmed. In addition, this interaction was no longer detected when the benzimidazole-d-nucleosides BDCRB or Cl4RB were added, thus indicating that these HCMV inhibitors block the insertion of the DNA into the capsid by preventing a necessary interaction of pUL56 with the portal. Electron microscopy revealed that in the presence of Cl4RB DNA is not packaged into capsids and these capsids failed to egress from the nucleus. Furthermore, pulsed-field gel electrophoresis showed that DNA concatemers synthesized in the presence of the compound failed to be processed.

Collaboration


Dive into the John C. Drach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger G. Ptak

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge