Banzhou Pan
Nanjing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Banzhou Pan.
Molecular Cancer | 2014
Banzhou Pan; Dongqin Chen; Jia-Yuan Huang; Rui Wang; Bing Feng; Haizhu Song; Longbang Chen
BackgroundDocetaxel resistance remains a major obstacle in the treatment of non-small cell lung cancer (NSCLC). High-mobility group box 1 (HMGB1) has been shown to promote autophagy protection in response to antitumor therapy, but the exact molecular mechanism underlying HMGB1-mediated autophagy has not been clearly defined.MethodsLung adenocarcinoma (LAD) cells were transfected with pcDNA3.1-HMGB1 or HMGB1 shRNA, followed by docetaxel treatment. Cell viability and proliferation were tested by MTT assay and colony formation assay, respectively. Annexin V flow cytometric analysis and western blot analysis of activated caspase3 and cleaved PARP were used to evaluate apoptosis, while immunofluorescence microscopy and transmission electron microscopy were applied to assess autophagy activity. The formation of the Beclin-1-PI3K-III complex was examined by immunoprecipitation analysis. NOD/SCID mice were inoculated with docetaxel-resistant SPC-A1/DTX cells transfected with control or HMGB1 shRNA.ResultsHMGB1 translocated from the nucleus to the cytoplasm in LAD cells exposed to docetaxel and acted as a positive regulator of autophagy, which inhibited apoptosis and increased drug resistance. Suppression of HMGB1 restored the sensitivity of LAD cells to docetaxel both in vivo and in vitro. Mechanistic investigation revealed that HMGB1 promoted the formation of the Beclin-1-PI3K-III complex through activating the mitogen-activated protein kinase (MEK)-extracellular signal-regulated kinase (ERK) signaling pathway, thereby regulating autophagosome formation.ConclusionsOur results demonstrated that HMGB1-regulated autophagy is a significant contributor to docetaxel resistance in LAD cells. Suppression of HMGB1 or limiting HMGB1 cytosolic translocation diminished autophagic protection in response to docetaxel in LAD cells.
European Journal of Cancer | 2014
Dongqin Chen; Jia-Yuan Huang; Kai Zhang; Banzhou Pan; Jing Chen; Wei De; Rui Wang; Longbang Chen
Epithelial-mesenchymal transition (EMT) has been reported to play a significant role in tumour metastasis as well as chemoresistance. However, the molecular mechanisms involved in chemotherapy-induced EMT are still unclear. MicroRNA (miRNA) expression and functions have been reported to contribute to phenotypic features of tumour cells. To investigate the roles of miRNAs in chemotherapy-induced EMT, we established two docetaxel-resistant lung adenocarcinoma (LAD) cell models (SPC-A1/DTX and H1299/DTX), which display EMT-like properties and gain increased invasion or migration activity. MiR-451 was found to be significantly downregulated in docetaxel-resistant LAD cells, and re-expression of miR-451 could reverse EMT to mesenchymal-epithelial transition (MET) and inhibit invasion and metastasis of docetaxel-resistant LAD cells both in vitro and in vivo. The proto-oncogene c-Myc was identified as a direct and functional target of miR-451, and further researches confirmed that overexpression of c-Myc which induced extracellular-signal-regulated kinase (ERK)-dependent glycogen synthase kinase-3 beta (GSK-3β) inactivation and subsequent snail activation is essential for acquisition of EMT phenotype induced by loss of miR-451. Furthermore, c-Myc was significantly upregulated in docetaxel-non-responding LAD tissues in comparison with docetaxel-responding tissues, and its expression was inversely correlated with miR-451 expression. This study first reported the involvement of miR-451/c-Myc/ERK/GSK-3β signalling axis in the acquisition of EMT phenotype in docetaxel-resistant LAD cells, suggesting that re-expression of miR-451 or targeting c-Myc will be a potential strategy for the treatment of chemoresistant LAD patients.
Oncotarget | 2015
Banzhou Pan; Bing Feng; Yitian Chen; Guichun Huang; Rui Wang; Longbang Chen; Haizhu Song
Chemoresistance remains a major clinical problem in combating human lung adenocarcinoma (LAD), and abnormal autophagy is closely associated with this phenomenon. In the present study, an inverse correlation between miR-200b and autophagy-associated gene 12 (ATG12) expressions was observed in docetaxel-resistant (SPC-A1/DTX and H1299/DTX) and sensitive (SPC-A1 and H1299) LAD cells as well as in tissue samples. Further study showed that miR-200b directly targeted ATG12 in LAD. Moreover, miR-200b-dependent ATG12 downregulation inhibited autophagy and enhanced the chemosensitivity of SPC-A1/DTX and H1299/DTX cells both in vivo and in vitro. LAD chemoresistance is therefore closely related to downregulation of miR-200b and the corresponding upregulation of ATG12. These results provide new evidence for the mechanisms governing the microRNA (miRNA)-ATG12 network and their possible contribution to autophagy modulation and LAD chemoresistance.
PLOS ONE | 2014
Dongqin Chen; Jia-Yuan Huang; Bing Feng; Banzhou Pan; Wei De; Rui Wang; Longbang Chen
The presence of cancer stem-like cells (CSCs) is one of the mechanisms responsible for chemoresistance that has been a major hindrance towards lung adenocarcinoma (LAD) treatment. Recently, we have identified microRNA (miR)-200b as a key regulator of chemoresistance in human docetaxel-resistant LAD cells. However, whether miR-200b has effects on regulating CSCs remains largely unclear and needs to be further elucidated. Here, we showed that miR-200b was significantly downregulated in CD133+/CD326+ cells that exhibited properties of CSCs derived from docetaxel-resistant LAD cells. Also, restoration of miR-200b could inhibit maintenance and reverse chemoresistance of CSCs. Furthermore, suppressor of zeste-12 (Suz-12) was identified as a direct and functional target of miR-200b, and silencing of Suz-12 phenocopied the effects of miR-200b on CSCs. Additionally, overexpression of histone deacetylase (HDAC) 1 was identified as a pivotal mechanism responsible for miR-200b repression in CSCs through a specificity protein (Sp) 1-dependent mechanism, and restoration of miR-200b by HDAC1 repression significantly suppressed CSCs formation and reversed chemoresistance of CSCs by regulating Suz-12-E-cadherin signaling. Also, downregulation of HDAC1 or upregulation of miR-200b reduced the in vivo tumorigenicity of CSCs. Finally, Suz-12 was inversely correlated with miR-200b, positively correlated with HDAC1 and up-regulated in docetaxel-resistant LAD tissues compared with docetaxel-sensitive tissues. Taken together, the HDAC1/miR-200b/Suz-12-E-cadherin signaling might account for maintenance of CSCs and formation of chemoresistant phenotype in docetaxel-resistant LAD cells.
Cancer Biotherapy and Radiopharmaceuticals | 2013
Banzhou Pan; Jun Yi; Haizhu Song
Chemoresistance remains a major clinical obstacle to successful cancer treatment and brings about poor prognosis of the patients, yet the underlying mechanisms have not been entirely understood. MicroRNAs (miRNAs) are a new class of small noncoding RNAs that may play an essential role for regulation of programmed cell death, which consists of apoptosis and autophagy. Autophagy refers to an evolutionarily conserved catabolic process in which, a cell degrades long-lived proteins and damaged organelles. Recently, increasing evidence indicates that autophagy is associated with multiple cancer-related pathways, including resistance to chemotherapeutics. Moreover, manipulation of miRNA expression levels may increase cell sensitivity to cytotoxic drugs through targeting the autophagic signaling pathway. In this review, we summarized the recent findings concerning miRNAs involved in autophagy, mainly focused on the mechanism of miRNA modulation at different autophagic stages, the crucial role of miRNAs in the interconnection between autophagy and apoptosis, and the potential of miRNAs to overcome chemoresistance by targeting autophagic pathways.
Experimental Biology and Medicine | 2014
Haizhu Song; Banzhou Pan; Jun Yi; Longbang Chen
Chemotherapy and radiotherapy are two indispensible methods for esophageal squamous cell carcinoma (ESCC), especially for those recurring and metastatic ones, but therapeutic toxicity remains a major problem to overcome. In the present study, the potential therapeutic value of nimotuzumab (an antiepidermal growth factor receptor [EGFR] monoclonal antibody) in combination with chemotherapy and radiotherapy was evaluated on Eca109 and TE-1 ESCC cells, with high and low expression of EGFR, respectively. It was shown that nimotuzumab enhanced the sensitivity of Eca109 cells to other cytotoxic agents (paclitaxel and cis-platinum) and X-ray radiation, and the cytotoxicity was associated with increased autophagy. Conversely, the chemo- and radio-sensitivity of TE-1 cells showed no improvement with addition of nimotuzumab, but could be increased by combining with rapamycin, an autophagy inducer. Therefore, it was concluded that autophagic activation mediated by nimotuzumab could promote autophagic cell death and produce additive antitumor effects.
Tumor Biology | 2016
Zhenyue He; Jun Yi; Li Jin; Banzhou Pan; Longbang Chen; Haizhu Song
Sirtuin-1 (SIRT1), one member of the mammalian sirtuin family, has been suggested to play an essential role in the development and progression of many tumors. However, the relationship between expression of SIRT1 and prognosis of esophageal cancer is still unknown. This study aimed to investigate SIRT1 expression and its possible prognostic value in esophageal squamous cell carcinoma (ESCC). A total of 86 patients with ESCC were enrolled in our study group. Clinical data and matched tissues were collected. Western blotting and real-time quantitative reverse transcription PCR (RT-PCR) were carried out to explore the expression of SIRT1 in four human ESCC cell lines, one human normal epithelial cell line, and clinical ESCC tissues. Expression levels of SIRT1 protein in tissues of specimens were detected by immunohistochemistry (IHC). Survival analysis was carried out using the Kaplan-Meier method. Univariate and multivariate Cox regression analyses were performed to evaluate the correlation of SIRT1 expression with clinical features and prognosis of ESCC patients. Basal expression levels of SIRT1 protein in ESCC tumor tissues and cell lines were higher than those in the control groups. IHC analysis showed that expression levels of SIRT1 protein significantly correlated with TNM stage and lymph node status of ESCC patients. Moreover, upregulated SIRT1 expression was associated with poor clinical prognosis. High SIRT1 expression in ESCC could serve as an independent predictive biomarker for diagnosis and prognosis in ESCC patients.
Oncotarget | 2015
Banzhou Pan; Yitian Chen; Haizhu Song; Yichen Xu; Rui Wang; Longbang Chen
Oncotarget | 2014
Dongqin Chen; Banzhou Pan; Jia-Yuan Huang; Kai Zhang; Shi-Yun Cui; Wei De; Rui Wang; Longbang Chen
Oncotarget | 2014
Rui Wang; Dongqin Chen; Jia-Yuan Huang; Kai Zhang; Bing Feng; Banzhou Pan; Jing Chen; Wei De; Longbang Chen