Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jia-Yuan Huang is active.

Publication


Featured researches published by Jia-Yuan Huang.


Molecular Cancer | 2014

HMGB1-mediated autophagy promotes docetaxel resistance in human lung adenocarcinoma

Banzhou Pan; Dongqin Chen; Jia-Yuan Huang; Rui Wang; Bing Feng; Haizhu Song; Longbang Chen

BackgroundDocetaxel resistance remains a major obstacle in the treatment of non-small cell lung cancer (NSCLC). High-mobility group box 1 (HMGB1) has been shown to promote autophagy protection in response to antitumor therapy, but the exact molecular mechanism underlying HMGB1-mediated autophagy has not been clearly defined.MethodsLung adenocarcinoma (LAD) cells were transfected with pcDNA3.1-HMGB1 or HMGB1 shRNA, followed by docetaxel treatment. Cell viability and proliferation were tested by MTT assay and colony formation assay, respectively. Annexin V flow cytometric analysis and western blot analysis of activated caspase3 and cleaved PARP were used to evaluate apoptosis, while immunofluorescence microscopy and transmission electron microscopy were applied to assess autophagy activity. The formation of the Beclin-1-PI3K-III complex was examined by immunoprecipitation analysis. NOD/SCID mice were inoculated with docetaxel-resistant SPC-A1/DTX cells transfected with control or HMGB1 shRNA.ResultsHMGB1 translocated from the nucleus to the cytoplasm in LAD cells exposed to docetaxel and acted as a positive regulator of autophagy, which inhibited apoptosis and increased drug resistance. Suppression of HMGB1 restored the sensitivity of LAD cells to docetaxel both in vivo and in vitro. Mechanistic investigation revealed that HMGB1 promoted the formation of the Beclin-1-PI3K-III complex through activating the mitogen-activated protein kinase (MEK)-extracellular signal-regulated kinase (ERK) signaling pathway, thereby regulating autophagosome formation.ConclusionsOur results demonstrated that HMGB1-regulated autophagy is a significant contributor to docetaxel resistance in LAD cells. Suppression of HMGB1 or limiting HMGB1 cytosolic translocation diminished autophagic protection in response to docetaxel in LAD cells.


Molecular Cancer Research | 2013

Let-7c Governs the Acquisition of Chemo- or Radioresistance and Epithelial-to-Mesenchymal Transition Phenotypes in Docetaxel-Resistant Lung Adenocarcinoma

Shi-Yun Cui; Jia-Yuan Huang; Yitian Chen; Haizhu Song; Bing Feng; Guichun Huang; Rui Wang; Longbang Chen; Wei De

MicroRNA (miRNA) expression and functions have been reported to contribute to phenotypic features of tumor cells. Although targets and functional roles for many miRNAs have been described in lung adenocarcinoma (LAD), their pathophysiologic roles in phenotypes of chemoresistant LAD cells are still largely unclear. Previously, docetaxel (DTX)-resistant LAD cell lines (SPC-A1/DTX and H1299/DTX) were established by our laboratory and displayed chemo- or radioresistance and mesenchymal features with enhanced invasiveness and motility. Unbiased miRNA profiling indicated that let-7c (MIRLET7C) was significantly downregulated in SPC-A1/DTX cells. Ectopic let-7c expression increased the in vitro and in vivo chemo- or radiosensitivity of DTX-resistant LAD cells through enhanced apoptosis, reversal of epithelial-to-mesenchymal phenotypes, and inhibition of in vivo metastatic potential via inactivation of Akt phosphorylation, whereas a let-7c inhibitor decreased the chemo- or radiosensitivity of parental cells. Further investigation suggested that let-7c significantly reduced the luciferase activity of a Bcl-xL 3′-UTR-based reporter, concordant with reduced Bcl-xL protein levels. Additionally, siRNA-mediated Bcl-xL knockdown mimicked the same effects of let-7c precursor, and enforced Bcl-xL expression partially rescued the effects of let-7c precursor in DTX-resistant LAD cells. Furthermore, we found that Bcl-xL was significantly upregulated in DTX-nonresponding LAD tissues, and its expression was inversely correlated with let-7c expression. This study suggests an important role for let-7c in the molecular etiology of chemoresistant lung adenocarcinoma. Mol Cancer Res; 11(7); 699–713. ©2013 AACR.


PLOS ONE | 2013

MicroRNA-650 was a prognostic factor in human lung adenocarcinoma and confers the docetaxel chemoresistance of lung adenocarcinoma cells via regulating Bcl-2/Bax expression.

Jia-Yuan Huang; Shi-Yun Cui; Yitian Chen; Haizhu Song; Guichun Huang; Bing Feng; Ming Sun; Wei De; Rui Wang; Longbang Chen

Increasing evidence shows that dysregulation of microRNAs (miRNAs) is involved in malignant transformation. We investigated the clinical significance of miR-650 and its involvement in chemoresistance to docetaxel. Our results showed that the relative expression level of miR-650 was significantly higher in LAD tissues than in corresponding nontumor tissues and high level of miR-650 expression was found to be significantly associated with high incidence of lymph node metastasis, advanced clinical stage and poor prognosis of LAD patients. Univariate and multivariate analyses indicated that high miR-650 expression was an independent prognostic factor for survival. Also, we found that the level of miR-650 in LAD tissues was correlated with the response of patients to docetaxel-based chemotherapy. Silencing of miR-650 could increase the in vitro sensitivity of docetaxel-resistant LAD cells to docetaxel, while upregulation of miR-650 decreased the sensitivity of parental LAD cells to docetaxel both in vitro and in vivo. Additionally, silencing of miR-650 could enhance the caspase-3-dependent apoptosis, which might be correlated with the decreased ratio of Bcl-2/Bax. Further researches suggested that inhibitor of growth 4 (ING4) was a direct target of miR-650. Downregulated or upregulated ING4 expression could partially rescue the effects of miR-650 inhibitor or mimics in docetaxel-resistant or parental LAD cells. Furthermore, we found that ING4 was upregulated in docetaxel-responding LAD tissues, and its expression was inversely correlated with miR-650. Thus, miR-650 is a novel prognostic marker in LAD and its expression is a potential indicator of chemosensitivity to docetaxel-based chemotherapy regimen.


European Journal of Cancer | 2014

MicroRNA-451 induces epithelial-mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc.

Dongqin Chen; Jia-Yuan Huang; Kai Zhang; Banzhou Pan; Jing Chen; Wei De; Rui Wang; Longbang Chen

Epithelial-mesenchymal transition (EMT) has been reported to play a significant role in tumour metastasis as well as chemoresistance. However, the molecular mechanisms involved in chemotherapy-induced EMT are still unclear. MicroRNA (miRNA) expression and functions have been reported to contribute to phenotypic features of tumour cells. To investigate the roles of miRNAs in chemotherapy-induced EMT, we established two docetaxel-resistant lung adenocarcinoma (LAD) cell models (SPC-A1/DTX and H1299/DTX), which display EMT-like properties and gain increased invasion or migration activity. MiR-451 was found to be significantly downregulated in docetaxel-resistant LAD cells, and re-expression of miR-451 could reverse EMT to mesenchymal-epithelial transition (MET) and inhibit invasion and metastasis of docetaxel-resistant LAD cells both in vitro and in vivo. The proto-oncogene c-Myc was identified as a direct and functional target of miR-451, and further researches confirmed that overexpression of c-Myc which induced extracellular-signal-regulated kinase (ERK)-dependent glycogen synthase kinase-3 beta (GSK-3β) inactivation and subsequent snail activation is essential for acquisition of EMT phenotype induced by loss of miR-451. Furthermore, c-Myc was significantly upregulated in docetaxel-non-responding LAD tissues in comparison with docetaxel-responding tissues, and its expression was inversely correlated with miR-451 expression. This study first reported the involvement of miR-451/c-Myc/ERK/GSK-3β signalling axis in the acquisition of EMT phenotype in docetaxel-resistant LAD cells, suggesting that re-expression of miR-451 or targeting c-Myc will be a potential strategy for the treatment of chemoresistant LAD patients.


Journal of Experimental & Clinical Cancer Research | 2013

Expression of Notch-1 and its clinical significance in different histological subtypes of human lung adenocarcinoma

Jia-Yuan Huang; Haizhu Song; Biao Liu; Bo Yu; Rui Wang; Longbang Chen

BackgroundAccording to the International Multidisciplinary Classification of Lung Adenocarcinoma (LAD) by International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) in 2011, the diagnosis of LAD is changing from simple morphology into a comprehensive multidisciplinary classification. The aim of this study is to detect the expression of Notch-1 and analyze its clinicopathological or prognostic significance in different histological subtypes of Lung Adenocarcinomas (LADs).MethodsWestern blot and Semi-quantitative Reverse transcription-polymerase chain reaction (RT-PCR) assays, as well as immunohisitochemistry, were performed to detect the expression of Notch-1 in LAD cells and tissue samples. Kaplan-Meier and multivariate Cox regression analyses were performed to evaluate the correlation of Notch-1 expression with clinicopathological factors and prognosis of LAD patients.ResultsThe expression level of Notch-1 protein in LAD cell lines or tissues was significantly lower than that in normal human bronchial epithelial cell line (16HBE) or nontumor tissues (P < 0.05). By statistical analyses, it was observed that negative Notch-1 expression was significantly associated with advanced clinical stage (P = 0.001) and lymph node metastasis (P = 0.026) in LAD patients. Also, the recurrence rate of Notch-1-positive group was higher than the Notch-1-negative group (P = 0.001), and patients with positive Notch-1 expression have a prolonged progression of overall survival (P = 0.033). More interestingly, the expression of Notch-1 protein was often observed to be negative in solid predominant adenocarcinoma (SPA) tissues, but highly expressed in papillary predominant adenocarcinoma (PPA) and micropapillary predominant adenocarcinoma (MPA) tissues. Kaplan-Meier survival analysis showed that patients with positive Notch-1 expression had a prolonged progression of overall survival compared with those with negative Notch-1 expression (P = 0.033). The median survival time of Notch-1-positive or negative patients was 64.6 months (95% CI: 31.497-97.703 months) or 36.0 months (95% CI: 12.132-59.868 months).ConclusionsNotch-1 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in LAD for diagnosis or prognosis.


Molecular Medicine | 2012

Identification of ING4 (inhibitor of growth 4) as a modulator of docetaxel sensitivity in human lung adenocarcinoma.

Rui Wang; Jia-Yuan Huang; Bing Feng; Wei De; Longbang Chen

Resistance to docetaxel (DTX) usually occurs in patients with lung adenocarcinoma. To better elucidate the underlying molecular mechanisms involved in resistance to DTX-based chemotherapy, we established a DTX-resistant lung adenocarcinoma cell line (SPC-A1/DTX). By gene array analysis, the expression of ING4 was found to be significantly downregulated in SPC-A1/DTX cells. Additionally, the decreased expression of the ING4 gene was induced upon DTX treatment of SPC-A1 cells. Overexpression of ING4 reverses DTX or paclitaxel resistance of DTX-resistant lung adenocarcinoma cells (SPC-A1/DTX or A549/Taxol) by inducing apoptosis enhancement and G2/M arrest, and small interfering RNA-mediated ING4 knockdown renders DTX-sensitive lung adenocarcinoma cells more resistant to DTX or paclitaxel. Also, overexpression of ING4 could enhance the in vivo sensitivity of SPC-A1/DTX cells to DTX. The phenotypical changes of SPC-A1/DTX cells induced by overexpression of ING4 might be associated with the decreased ratio of Bcl-2/Bax, which resulted in the activation of caspase-3. The level of ING4 expression in tumors of nonresponding patients was significantly lower than that in those of responders, suggesting that the expression of ING4 was positively correlated with tumor response to DTX. Our results provide the first evidence that ING4 might be essential for DTX resistance in lung adenocarcinoma. Thus, ING4 will be a potential molecular target for overcoming resistance to DTX-based chemotherapies in lung adenocarcinoma.


PLOS ONE | 2014

Histone Deacetylase 1/Sp1/MicroRNA-200b Signaling Accounts for Maintenance of Cancer Stem-Like Cells in Human Lung Adenocarcinoma

Dongqin Chen; Jia-Yuan Huang; Bing Feng; Banzhou Pan; Wei De; Rui Wang; Longbang Chen

The presence of cancer stem-like cells (CSCs) is one of the mechanisms responsible for chemoresistance that has been a major hindrance towards lung adenocarcinoma (LAD) treatment. Recently, we have identified microRNA (miR)-200b as a key regulator of chemoresistance in human docetaxel-resistant LAD cells. However, whether miR-200b has effects on regulating CSCs remains largely unclear and needs to be further elucidated. Here, we showed that miR-200b was significantly downregulated in CD133+/CD326+ cells that exhibited properties of CSCs derived from docetaxel-resistant LAD cells. Also, restoration of miR-200b could inhibit maintenance and reverse chemoresistance of CSCs. Furthermore, suppressor of zeste-12 (Suz-12) was identified as a direct and functional target of miR-200b, and silencing of Suz-12 phenocopied the effects of miR-200b on CSCs. Additionally, overexpression of histone deacetylase (HDAC) 1 was identified as a pivotal mechanism responsible for miR-200b repression in CSCs through a specificity protein (Sp) 1-dependent mechanism, and restoration of miR-200b by HDAC1 repression significantly suppressed CSCs formation and reversed chemoresistance of CSCs by regulating Suz-12-E-cadherin signaling. Also, downregulation of HDAC1 or upregulation of miR-200b reduced the in vivo tumorigenicity of CSCs. Finally, Suz-12 was inversely correlated with miR-200b, positively correlated with HDAC1 and up-regulated in docetaxel-resistant LAD tissues compared with docetaxel-sensitive tissues. Taken together, the HDAC1/miR-200b/Suz-12-E-cadherin signaling might account for maintenance of CSCs and formation of chemoresistant phenotype in docetaxel-resistant LAD cells.


Cell Cycle | 2013

The role of Aurora A in hypoxia-inducible factor 1α-promoting malignant phenotypes of hepatocelluar carcinoma.

Shi-Yun Cui; Jia-Yuan Huang; Yitian Chen; Haizhu Song; Guichun Huang; Wei De; Rui Wang; Longbang Chen

Overexpression of both hypoxia-inducible factor 1α (HIF-1α) and Aurora A has been found in hepatocelluar carcinoma (HCC). However, whether HIF-1α and Aurora A synergistically promote malignant phenotypes of HCC cells is unknown. The purpose of this study was to investigate the roles and functional correlation of HIF-1α and Aurora A in HCC progression. Immunohistochemistry was performed to detect HIF-1α and Aurora A protein expression in 55 primary HCC and corresponding non-tumor tissues and their clinical significance. Gene knockout technology using short hairpin RNA (shRNA) was used to knockdown expression of HIF-1α or Aurora A and analyze their effects on malignant phenotypes of HCC cells. The transcriptional regulation of Aurora A by HIF-1α and the possible downstream molecular signaling pathways were also determined. Results showed that hypoxia could induce the increased expression of HIF-1α and Aurora A in HCC cells. Also, shRNA-mediated HIF-1α downregulation could lead to the decreased Aurora A expression and inhibition of growth or invasion in HCC cells. Moreover, HIF-1α could transcriptionally regulate Aurora A expression by binding to hypoxia-responsive elements in the Aurora A promoter and recruiting the coactivator-p300/CBP. Additionally, shRNA-mediated Aurora A knockdown could mimic the effects of HIF-1α downregulation on phenotypes of HCC cells, and overexpression of Aurora A could partially rescue the phenotypical changes of HCC cells induced by HIF-1α downregulation. Further research indicated that activation of Akt and p38-MAPK signaling pathways mediated the downstream effects of HIF-1α and Aurora A in HCC cells under hypoxic condition. Taken together, our findings indicated that Aurora A might be a key regulator of HIF-1α-promoting malignant phenotypes of HCC by activation of Akt and p38-MAPK signaling pathways.


Molecular therapy. Nucleic acids | 2016

Notch-1 Confers Chemoresistance in Lung Adenocarcinoma to Taxanes through AP-1/microRNA-451 Mediated Regulation of MDR-1

Jia-Yuan Huang; Yitian Chen; Junyang Li; Kai Zhang; Jing Chen; Dongqin Chen; Bing Feng; Haizhu Song; Jifeng Feng; Rui Wang; Longbang Chen

We previously demonstrated that expression of Notch-1 is associated with poor prognosis in lung adenocarcinoma (LAD) patients. The aim of this study is to reveal whether Notch-1 was associated with Taxanes-resistant LAD and, the underlying mechanisms. We collected 39 patients of advanced LAD treated with Taxanes and found that positive Notch-1 expression is closely related to LAD lymph node metastasis, recurrence and poorer prognosis, and Notch-1 acts as an independent poor prognostic factor in LAD by multivariate analysis with Cox regression model. Then, by using the Docetaxel (DTX)-resistant LAD cell lines that we established previously, we found that Notch-1 contributes to resistance of LAD cells to DTX in vitro, and inhibition of Notch-1 sensitizes LAD to DTX in vivo. We further demonstrated that Notch-1 mediates chemoresistance response and strengthens proliferation capacity in LAD cells partially through negative regulation of miR-451 by transcription factor AP-1. Moreover, we found that MDR-1 is a direct target of miR-451 and influences chemoresistance of LAD cells. Taken together, our data revealed a novel Notch-1/AP-1/miR-451/MDR-1 signaling axis, and suggested a new therapeutic strategy of combining DTX with Notch inhibitors to treat DTX-resistant LAD.We previously demonstrated that expression of Notch-1 is associated with poor prognosis in lung adenocarcinoma (LAD) patients. The aim of this study is to reveal whether Notch-1 was associated with Taxanes-resistant LAD and, the underlying mechanisms. We collected 39 patients of advanced LAD treated with Taxanes and found that positive Notch-1 expression is closely related to LAD lymph node metastasis, recurrence and poorer prognosis, and Notch-1 acts as an independent poor prognostic factor in LAD by multivariate analysis with Cox regression model. Then, by using the Docetaxel (DTX)-resistant LAD cell lines that we established previously, we found that Notch-1 contributes to resistance of LAD cells to DTX in vitro, and inhibition of Notch-1 sensitizes LAD to DTX in vivo. We further demonstrated that Notch-1 mediates chemoresistance response and strengthens proliferation capacity in LAD cells partially through negative regulation of miR-451 by transcription factor AP-1. Moreover, we found that MDR-1 is a direct target of miR-451 and influences chemoresistance of LAD cells. Taken together, our data revealed a novel Notch-1/AP-1/miR-451/MDR-1 signaling axis, and suggested a new therapeutic strategy of combining DTX with Notch inhibitors to treat DTX-resistant LAD.


Oncotarget | 2015

MicroRNA-451: epithelial-mesenchymal transition inhibitor and prognostic biomarker of hepatocelluar carcinoma

Jia-Yuan Huang; Kai Zhang; Dongqin Chen; Jing Chen; Bing Feng; Haizhu Song; Yitian Chen; Ziman Zhu; Lei Lu; Wei De; Rui Wang; Longbang Chen

Collaboration


Dive into the Jia-Yuan Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei De

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge