Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bao Yuan is active.

Publication


Featured researches published by Bao Yuan.


FEBS Letters | 2016

miR‐375 negatively regulates porcine preadipocyte differentiation by targeting BMPR2

Siyuan Liu; Guangjie Sun; Bao Yuan; Lianjiang Zhang; Yan Gao; Hao Jiang; Lisheng Dai; Jiabao Zhang

The differentiation of preadipocytes into adipose tissues is tightly regulated by various factors including miRNAs and cytokines. In this study, taking advantage of isolated porcine primary preadipocytes, we showed that ectopic expression of miR‐375 could change preadipocyte differentiation. In addition, bone morphogenetic protein receptor 2 (BMPR2) was identified as a direct target of miR‐375. Silencing BMPR2 had the same inhibition effects as overexpressing miR‐375 on the preadipocyte differentiation. Together, we demonstrated that miR‐375 is a negative regulator of adipogenic differentiation using porcine primary preadipocytes. These results clarified the role of miR‐375 in ex vivo adipogenic differentiation.


Cellular Physiology and Biochemistry | 2015

MiR-378 Plays an Important Role in the Differentiation of Bovine Preadipocytes.

Siyuan Liu; Yang-Yang Zhang; Yan Gao; Lian-Jiang Zhang; Hongyan Chen; Qian Zhou; Menglong Chai; Qing-Ying Li; Hao Jiang; Bao Yuan; Lisheng Dai; Jiabao Zhang

Background: Adipocyte, the main cellular component of white adipose tissue, plays a vital role in energy balance in higher eukaryotes. In recent years, adipocytes have also been identified as a major endocrine organ involved in immunological responses, vascular diseases, and appetite regulation. In farm animals, fat content and categories are closely correlated with meat quality. MicroRNAs (miRNAs), a class of endogenous single-stranded non-coding RNA molecules, participate in the regulation of adipocyte differentiation and adipogenesis through regulating the transcription or translation of target mRNAs. MiR-378 plays an important role in a number of biological processes, including cell growth, cell differentiation, tumor cell survival and angiogenesis. Methods: In the present study, bioinformatics analysis and dual-luciferase reporter assay were used to identify and validate the target genes of miR-378. In vitro cell transfection, quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot analysis, Oil Red O staining, and triglyceride content measurement were conducted to analyze the effects of miR-378 on bovine preadipocyte differentiation. Results: MiR-378 was induced during adipocyte differentiation. In the differentiated adipocytes overexpressing miR-378, the volume of lipid droplets was enlarged, and the triglyceride content was increased. Moreover, the mRNA expression levels of the adipocyte differentiation marker genes, peroxisome proliferator-activated receptor gamma (PPARγ) and sterol regulatory element-binding protein (SREBP), were significantly elevated in the differentiated, mature adipocytes. In contrast, the mRNA expression level of preadipocyte factor 1 (Pref-1) was markedly reduced. E2F transcription factor 2 (E2F2) and Ras-related nuclear (RAN)-binding protein 10 (RANBP10) were the two target genes of miR-378. The mRNA expression levels of E2F2 and RANBP10 did not significantly change in bovine preadipocytes overexpressing miR-378. However, the protein expression levels of E2F2 and RANBP10 were markedly reduced. Conclusion: MiR-378 promoted the differentiation of bovine preadipocytes. E2F2 and RANBP10 were the two target genes of miR-378, and might involve in the effects of miR-378 on the bovine preadipocyte differentiation.


Cellular Physiology and Biochemistry | 2014

The MBD4 Gene Plays an Important Role in Porcine Adipocyte Differentiation

Lian-Jiang Zhang; Ya-Nan Zhu; Yan Gao; Siyuan Liu; Bo Zhai; Changhong Li; Huiyu Liu; Jian Chen; Bao Yuan; Lisheng Dai; Jiabao Zhang

Background: MBD4 (methyl-CpG binding domain protein 4) is an important G: T glycosylase that can identify T-G mismatches. It plays a role in active demethylation through base excision repair. Overexpression of MBD4 gene can cause the demethylation of numerous genes, and the remethylation of MBD4-associated genes can occur when the MBD4 gene is knocked out. To date, the functions and regulatory mechanisms of the MBD4 gene in the differentiation of porcine preadipocytes have not been clearly established. Methods: Subcutaneous fat cells from 1- to 7-day-old Junmu-1 piglets were cultured in vitro, induced to differentiate, and then identified. A real-time fluorescence-based quantitative polymerase chain reaction (PCR) analysis was conducted to detect MBD4 messenger RNA (mRNA) expression. Cells were treated with MBD4-siRNA (small interfering RNA) and induced to differentiate. Changes in the lipid droplets were observed by oil red O staining. Changes in the mRNA and protein expression levels of MBD4 and the adipose differentiation-associated genes C/EBPα (CCAAT-enhancer-binding protein alpha), PPARγ (peroxisome proliferator-activated receptor gamma), and aP2 (adipocyte protein 2) were detected. In addition, the bisulfite sequencing method was used to detect changes in methylation in the promoters of certain genes associated with adipose differentiation. Results: Levels of MBD4 mRNA and protein expression varied with time over the course of the porcine adipocyte differentiation, with the highest levels of this expression observed on day two of the differentiation process. After silencing MBD4 and inducing differentiation, the production of lipid droplets decreased, the mRNA expression levels of C/EBPα, PPARγ, and aP2 were significantly reduced, and DNA methylation modification levels were significantly elevated in the examined promoter regions. Conclusion: The silencing of the MBD4 gene can influence the DNA methylation levels of preadipocyte differentiation-related genes and subsequently inhibit the differentiation of porcine preadipocytes.


Scientific Reports | 2017

Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress

Shuang Liang; Yong-Xun Jin; Bao Yuan; Jiabao Zhang; Nam-Hyung Kim

Melatonin has antioxidant and scavenger effects in the cellular antioxidant system. This research investigated the protective effects and underlying mechanisms of melatonin action in porcine somatic cell nuclear transfer (SCNT) embryos. The results suggested that the developmental competence of porcine SCNT embryos was considerably enhanced after melatonin treatment. In addition, melatonin attenuated the increase in reactive oxygen species levels induced by oxidative stress, the decrease in glutathione levels, and the mitochondrial dysfunction. Importantly, melatonin inhibited phospho-histone H2A.X (γH2A.X) expression and comet tail formation, suggesting that γH2A.X prevents oxidative stress-induced DNA damage. The expression of genes involved in homologous recombination and non-homologous end-joining pathways for the repair of double-stranded breaks (DSB) was reduced upon melatonin treatment in porcine SCNT embryos at day 5 of development under oxidative stress condition. These results indicated that melatonin promoted porcine SCNT embryo development by preventing oxidative stress-induced DNA damage via quenching of free radical formation. Our results revealed a previously unrecognized regulatory effect of melatonin in response to oxidative stress and DNA damage. This evidence provides a novel mechanism for the improvement in SCNT embryo development associated with exposure to melatonin.


Molecular Medicine Reports | 2015

Expression of microRNA‑26b and identification of its target gene EphA2 in pituitary tissues in Yanbian cattle

Bao Yuan; Wang‑Yang Yu; Li‑Sheng Dai; Yan Gao; Yu Ding; Xian‑Feng Yu; Jian Chen; Jia‑Bao Zhang

microRNAs (miRNAs/miRs) are a class of single-stranded non-coding RNA molecules of 19–24 nucleotides (nt) in length. They are widely expressed in animals, plants, bacteria and viruses. Via specific mRNA complementary pairing of target genes, miRNAs are able to regulate the expression of mRNA levels or inhibit protein translation following transcription. miRNA expression has a time- and space specificity, and it is involved in cell proliferation and differentiation, apoptosis, development, tumor metastasis occurrence and other biological processes. miR-26b is an miRNA of 22 nt and is important in the regulation of cellular processes. With the advancement of molecular biology techniques in recent years, there have been extensive investigations into miR-26b. Numerous studies have observed that miR-26b is involved in early embryonic development, cell proliferation regulation, pituitary hormone secretion and other physiological activities. miRNAs are associated with the function of propagation. The present study used reverse transcription quantitative polymerase chain reaction to detect the relative expression levels of miR-26b in the pituitary tissue of Yanbian cattle at different developmental stages. The 2−ΔΔCt method was used to calculate the relative gene expression levels. The miRNA target gene database TargetScan and RNA22 were used for prediction of the miR-26b target gene and selective recognition was also performed. The results demonstrated that miR-26b is expressed in the pituitary tissues of Yanbian cattle at 6 and 24 months of age. The relative expression levels of miR-26b in the pituitary tissues of 24-month-old Yanbian cattle were 2.41 times that of those in the six-month-old Yanbian cattle, demonstrating significant differences in the relative expression (P<0.01). The relative expression of the candidate target genes, EphA2 and miR-26b, exhibited the opposite expression pattern. The relative expression levels in the pituitary tissues of six-month-old Yanbian cattle were 3.34 times that of those in 24-month-old Yanbian cattle (P<0.01). There are miR-26b binding sites in the 3′-untranslated region (3′-UTR) of EphA2 in bovine, human, murine and other mammalian mRNAs, suggesting that the EphA2 gene may be a target gene of miR-26b. The results of a Luciferase reporter system assay revealed that miR-26b is able to suppress EphA2 expression at the transcription level. Following the site-directed mutagenesis of plasmid EphA2 3′-UTR pmirGLO-MUT- and miR-26b mimic-transfected HeLa cells, the dual-luciferase reporter gene assay revealed that there were three consecutive nucleotide mutations in the 3′-UTR, binding with the predicted seed region. This may have caused the miR-26b inhibition of luciferase activity to decrease from 60% in the wild-type to 26%, suggesting that miR-26b achieved its function via binding with the TACTTGAA sequence of the 3′-UTR in EphA2. In conclusion, the present study successfully assessed the expression pattern of miR-26b in the pituitary tissue of Yanbian cattle, and also confirmed that EphA2 was a target gene of miR-26b in Yanbian cattle in vitro. The present study provided the theoretical basis to further investigate the role of miR-26b in early embryonic development, pituitary hormone secretion and other reproductive functions.


Oncotarget | 2017

Roles of differential expression of microRNA-21-3p and microRNA-433 in FSH regulation in rat anterior pituitary cells

Dong-Xu Han; Xu-Lei Sun; Ming-Qiang Xu; Chengzhen Chen; Hao Jiang; Yan Gao; Bao Yuan; Jiabao Zhang

Follicle-stimulating hormone (FSH) secreted by adenohypophyseal cells plays an important role in the regulation of reproduction, but whether microRNAs (miRNAs) regulate the secretion of FSH remains unclear. In the present study, we predicted and screened miRNAs that might act on the follicle-stimulating hormone beta-subunit (FSHb) gene of rats using the TargetScan program and luciferase reporter assays, and the results identified two miRNAs, miR-21-3p and miR-433. We then transfected these miRNAs into rat anterior adenohypophyseal cells and assessed the FSHb expression levels in and FSH secretion by the transfected cells through quantitative PCR and ELISA. The results showed that both miR-21-3p and miR-433 down-regulated the expression levels of FSHb and resulted in the decrease of the secretion of FSH compared with the control group, and treatment with miR-21-3p and miR-433 inhibitors up-regulated the expression levels of FSHb and resulted in the increase of the secretion of FSH. Taken together, our results indicate that miR-21-3p and miR-433 can down-regulate the expression of FSHb by directly targeting the FSHb 3′UTR in rat primary pituitary cells. Our findings provide evidence that miRNAs can regulate FSHb expression and further affect the secretion of FSH and might contribute to the use of miRNAs for the regulation of animal reproduction.


PLOS ONE | 2017

Toxic effects of atrazine on porcine oocytes and possible mechanisms of action

Bao Yuan; Shuang Liang; Yong-Xun Jin; Mingjun Zhang; Jiabao Zhang; Nam-Hyung Kim

Because atrazine is a widely used herbicide, its adverse effects on the reproductive system have been extensively researched. In this study, we investigated the effects of atrazine exposure on porcine oocyte maturation and the possible mechanisms. Our results showed that the rates of oocyte maturation significantly decreased after treatment with 200 μM atrazine in vitro. Atrazine treatment resulted in abnormal spindle morphology but did not affect actin distribution. Atrazine exposure not only triggered a DNA damage response but also decreased MPF levels in porcine oocytes. Our results also revealed that atrazine worsened porcine oocyte quality by causing excessive accumulation of superoxide radicals, increasing cathepsin B activity, and decreasing the GSH level and mitochondrial membrane potential. Furthermore, atrazine decreased developmental competence of porcine oocytes up to the blastocyst stage and changed some properties: cell numbers, apoptosis, and related gene expression levels. Collectively, our results indicate that porcine oocyte maturation is defective after atrazine treatment at least through disruption of spindle morphology, MPF activity, and mitochondrial function and via induction of DNA damage, which probably reduces developmental competence.


PLOS ONE | 2016

The Role of Glucose Metabolism on Porcine Oocyte Cytoplasmic Maturation and Its Possible Mechanisms

Bao Yuan; Shuang Liang; Jeong-Woo Kwon; Yong-Xun Jin; Shun-Ha Park; HaiYang Wang; Tian-Yi Sun; Jiabao Zhang; Nam-Hyung Kim; Qing-Yuan Sun

In the present study, we investigated the potential role of glucose and pyruvate in the cytoplasmic maturation of porcine oocytes by investigating the effect of glucose and/or pyruvate supplementation, in the presence or absence of 10% porcine follicular fluid (PFF), on meiotic maturation and subsequent embryo development. In the absence of 10% PFF, without exogenous addition of glucose and pyruvate, the medium seemed unable to support maturation. In the presence of 10% PFF, the addition of 5.6 mM glucose and/or 2 mM pyruvate during in vitro maturation of cumulus enclosed oocytes increased MII oocyte and blastocyst rates. In contrast, oocytes denuded of cumulus cells were not able to take full advantage of the glucose in the medium, as only pyruvate was able to increase the MII rate and the subsequent early embryo developmental ability. Treatment of cumulus enclosed oocytes undergoing maturation with 200 μM dehydroepiandrosterone (DHEA), a pentose phosphate pathway inhibitor, or 2 μM iodoacetate (IA), a glycolysis inhibitor, significantly reduced GHS, intra-oocyte ATP, maternal gene expression, and MPF activity levels. DHEA was also able to increase ROS and reduce the levels of NADPH. Moreover, blastocysts of the DHEA- or IA-treated groups presented higher apoptosis rates and markedly lower cell proliferation cell rates than those of the non-treated group. In conclusion, our results suggest that oocytes maturing in the presence of 10% PFF can make full use of energy sources through glucose metabolism only when they are accompanied by cumulus cells, and that pentose phosphate pathway (PPP) and glycolysis promote porcine oocyte cytoplasmic maturation by supplying energy, regulating maternal gene expression, and controlling MPF activity.


Cellular Physiology and Biochemistry | 2016

Thymine DNA Glycosylase Gene Knockdown Can Affect the Differentiation of Pig Preadipocytes.

Lian-Jiang Zhang; Siyuan Liu; Ya-Nan Zhu; Yan Gao; Jian Chen; Bao Yuan; Hao Jiang; Lisheng Dai; Jiabao Zhang

Aims: To study the effect of thymine DNA glycosylase (TDG) gene knockdown on the differentiation of pig preadipocytes. Methods: Preadipocytes were obtained from subcutaneous adipose tissue from the neck of 1- to 7-day-old pigs. The TDG gene was knocked down using siRNA, and cell differentiation was induced. The mRNA expression level was measured using fluorescence quantitative PCR, and the protein expression level was determined using Western blot analysis. The DNA methylation levels in promoter regions of differentiation-related genes were also evaluated. Results: TDG gene knockdown decreased the mRNA expression levels of the peroxisome proliferator-activated receptorγ (PPARγ) and Fatty acid binding proteins 4(FABP4 Also known as aP2) genes (P<0.01), while the mRNA expression level of the CCAAT/enhancer binding protein alpha(C/EBPα) gene did not change significantly (P>0.05). In addition, after induced differentiation, the lipid droplet production significantly decreased, and the percentages of methylation in the promoter regions of C/EBPα, PPARγ, and aP2 genes were 0.9%, 80%, and 76%, respectively. In contrast, the percentages of methylation in the negative control groups were 0.5%, 67.5%, and 58%, respectively. Conclusion: TDG gene knockdown could inhibit the differentiation of pig preadipocytes and affect the DNA methylation levels of some transcription factors.


Cellular Physiology and Biochemistry | 2018

Effects of MiR-375-BMPR2 as a Key Factor Downstream of BMP15/GDF9 on the Smad1/5/8 and Smad2/3 Signaling Pathways

Chang Liu; Bao Yuan; Hongyan Chen; Ming-Qiang Xu; Xu-Lei Sun; Jiajun Xu; Yan Gao; Chengzhen Chen; Hao Jiang; Jiabao Zhang

Background/Aims: Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), which are secreted by oocytes, are important regulators of follicular growth and development and ovarian function. These two factors can regulate the proliferation and apoptosis of cumulus cells via modulation of the Smad signaling pathway. Studies have shown that BMP15 and GDF9 can affect the level of miR-375, whereas the target gene of miR-375 is BMPR2, the type II receptor of BMP15 and GDF9. However, whether or how the BMP15/ GDF9-miR-375-BMPR2 pathway affects the proliferation and apoptosis of bovine cumulus cells through regulation of the Smad signaling pathway remains unclear. Methods: In this study, cumulus cells were first obtained from cumulus-oocyte complexes (COCs). Appropriate concentrations of BMP15 and GDF9 were added during the in vitro culture process. Cell Counting Kit-8 (CCK-8) analyses and flow cytometry were used to determine the effects of BMP15/GDF9 on bovine cumulus cells proliferation and apoptosis. Subsequently, miR-375 mimics, miR-375 inhibitor and BMPR2 siRNA were synthesized and used for transfection experiments. Western Blot analysis was used to detect changes before and after transfection in the expression levels of the BMP15/GDF9 type I receptors ALK4, ALK5 and ALK6; the phosphorylation levels of Smad2/3 and Smad1/5/8, which are key signaling pathway proteins downstream of BMP15/GDF9; the expression levels of PTX3, HAS2 and PTGS2, which are key genes involved in cumulus cells proliferation; and Bcl2/Bax, which are genes involved in apoptosis. Results: The addition of 100 ng/mL BMP15 or 200 ng/mL GDF9 or the combined addition of 50 ng/mL BMP15 and 100 ng/mL GDF9 effectively inhibited bovine cumulus cell apoptosis and promoted cell proliferation. BMP15/GDF9 negatively regulated miR-375 expression and positively regulated BMPR2 expression. High levels of miR-375 and inhibition of BMPR2 resulted in increased expression of ALK4 and decreased expression of PTX3, HAS2 and PTGS2, whereas miR-375 inhibition resulted in the opposite results. BMP15 and GDF9 significantly activated the levels of p-Smad2/3 and p-Smad1/5/8, whereas miR-375 inhibited the levels of p-Smad2/3 and p-Smad1/5/8 by negatively regulating BMPR2 and also led to apoptosis. Conclusion: BMP15 and GDF9 have synergistic effects and can act through miR-375 to affect the expression levels of type I receptor ALK4 and type II receptor BMPR2 and the activation of Smad signaling pathway, which subsequently affected the proliferation, spread and apoptosis of cumulus cells.

Collaboration


Dive into the Bao Yuan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nam-Hyung Kim

Chungbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge