Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiabao Zhang is active.

Publication


Featured researches published by Jiabao Zhang.


Journal of Applied Genetics | 2011

Microarray analysis of differentially expressed microRNAs in non-regressed and regressed bovine corpus luteum tissue; microRNA-378 may suppress luteal cell apoptosis by targeting the interferon gamma receptor 1 gene.

Tenghe Ma; Hao Jiang; Yan Gao; Yumin Zhao; Lisheng Dai; Qiuhong Xiong; Yanli Xu; Zhihui Zhao; Jiabao Zhang

MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules that down-regulate the expression of target genes in a sequence-dependent manner. Recent studies indicated that miRNAs are mechanistically involved in the regulation of the mammalian corpus luteum (CL). However, few studies have profiled the different miRNA expression patterns in bovine non-regressed and regressed CL. In this study, miRNA microarray was employed to investigate the different miRNA expression patterns in bovine CL. Among the 13 differentially expressed miRNAs, seven were preferentially expressed in non-regressed CL, while six miRNAs were more highly expressed in regressed CL. Real-time RT-PCR was used to validate the microarray results. Mir-378 miRNA, known to be associated with apoptosis, was 8.54-fold (P < 0.01) up-regulated in non-regressed CL, and the interferon gamma receptor 1 (IFNGR1) gene, which potentially plays a role in apoptosis of the luteal cell, was predicted to be the target of mir-378. The results of real-time RT-PCR of mir-378 and western blot analysis of the IFNGR1 protein at different stages of CL development showed that mir-378 decreased the expression of IFNGR1 protein but not IFNGR1 mRNA. Taken together, our data support a direct role for miRNA in apoptosis of bovine CL.


Cellular Reprogramming | 2011

Trichostatin A Modulates Apoptotic-Related Gene Expression and Improves Embryo Viability in Cloned Bovine Embryos

Xiang-Shun Cui; Yong-Nan Xu; Xing-Hui Shen; Li-Qun Zhang; Jiabao Zhang; Nam-Hyung Kim

Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transferred nuclei into oocytes. Trichostatin A (TSA), a histone deacetylase inhibitor, has been used to enhance nuclear reprogramming following SCNT. However, the molecular mechanism of TSA for the improvement of the preimplantation embryo and fetal development following SCNT is not known. The present study investigates embryo viability and gene expression of cloned bovine preimplantation embryos in the presence and absence of TSA compared to embryos produced by in vitro fertilization or parthenogenetic activation. Our results indicated that TSA treatment significantly improved total and inner cell mass (ICM) cell number and ratio of ICM:trophectoderm (TE) and also decreased the apoptotic index including total, ICM, and ratio of ICM:TE. Four apoptotic-related genes, Bcl-xL, survivin, Bcl2-associated X protein (Bax), and caspase 3 (Casp3), and four pluripotency/differentiation related genes, Oct4, SRY (sex determining region Y)-box 2 (Sox2), Cdx2, and colony-stimulating factor 1 receptor (Csf1r), were measured by real-time RT-PCR. TSA treatment resulted in the high expression of antiapoptotic gene Bcl-xL and low expression of pro-apoptotic gene Bax compared to untreated NT embryos, fertilized embryos, or parthenotes. Furthermore, mRNA expression of Cdx2 was higher in NT-TSA embryos than in NT and in vitro fertilization (IVF) counterparts. Additionally, low expression of microRNA (mir)-21 in NT embryos was enhanced following TSA treatment. These results suggest that TSA positively regulates nuclear reprogramming, and TSA may increased resistance or reduced signal for induction of apoptosis.


Cellular Physiology and Biochemistry | 2013

BMP15 Prevents Cumulus Cell Apoptosis Through CCL2 and FBN1 in Porcine Ovaries

Bo Zhai; Huiyu Liu; Xu Li; Lisheng Dai; Yan Gao; Changhong Li; Lian-Jiang Zhang; Yu Ding; Xianfeng Yu; Jiabao Zhang

Background: Bone morphogenetic protein-15 (BMP15) is a maternal gene necessary for mammalian reproduction. BMP15 expression increased in oocytes accompanied by follicle growth and development. The function and regulation mechanism of BMP15 in porcine cumulus cell apoptosis process is still unclear now. Methods: In this study, flow cytometry (FCM) was used to analyze the effects of BMP15 with different concentrations to cumulus cell apoptosis. High-throughput sequencing technology was carried out to screen regulatory genes linked closely with BMP15. In order to confirm the function of (MCP-1)/CCL2 and FBN1 in cumulus cell apoptosis, RNA interference (RNAi) method was used to inhibit the expression of (MCP-1)/CCL2 and FBN1. Apoptosis and proliferation of cumulus cell treated with siRNA transfection technology were measured by FCM, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, quantitative real time-PCR (RT-qPCR) and western blotting. Results: The results showed that the apoptosis levels of cumulus cell treated by BMP15 decreased significantly in a dose-dependent manner. The expression of related genes protein 1 (MCP-1)/CCL2 and fibrillin1 (FBN1) were both regulated by BMP15. After transfection, the proliferation of porcine cumulus cells increased significantly and apoptosis of cumulus cells was prevented while FBN1 was silenced after BMP15 treatment. The proliferation of cumulus cells decreased significantly and apoptosis rate of cumulus cells increased significantly while CCL2 was silenced. Conclusion: The results obtained in this study firstly demonstrated that CCL2 and FBN1 are important regulatory factors of BMP15 in preventing cumulus cell apoptosis in porcine ovaries.


FEBS Letters | 2016

miR‐375 negatively regulates porcine preadipocyte differentiation by targeting BMPR2

Siyuan Liu; Guangjie Sun; Bao Yuan; Lianjiang Zhang; Yan Gao; Hao Jiang; Lisheng Dai; Jiabao Zhang

The differentiation of preadipocytes into adipose tissues is tightly regulated by various factors including miRNAs and cytokines. In this study, taking advantage of isolated porcine primary preadipocytes, we showed that ectopic expression of miR‐375 could change preadipocyte differentiation. In addition, bone morphogenetic protein receptor 2 (BMPR2) was identified as a direct target of miR‐375. Silencing BMPR2 had the same inhibition effects as overexpressing miR‐375 on the preadipocyte differentiation. Together, we demonstrated that miR‐375 is a negative regulator of adipogenic differentiation using porcine primary preadipocytes. These results clarified the role of miR‐375 in ex vivo adipogenic differentiation.


Cellular Physiology and Biochemistry | 2017

Regulatory Role of miRNA-375 in Expression of BMP15/GDF9 Receptors and its Effect on Proliferation and Apoptosis of Bovine Cumulus Cells

Hongyan Chen; Chang Liu; Hao Jiang; Yan Gao; Ming-Qiang Xu; Jiawei Wang; Siyuan Liu; Yao Fu; Xu-Lei Sun; Jiajun Xu; Jiabao Zhang; Lisheng Dai

Background: Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are members of the transforming growth factor beta (TGF-β) superfamily. Through autocrine and paracrine mechanisms, these two factors can regulate cell differentiation, proliferation, and other functions in the ovary locally. Furthermore, GDF9 and BMP15 play vital roles in follicular growth, atresia, ovulation, fertilization, reproduction, and maintenance. Numerous studies have demonstrated a synergy between BMP15 and GDF9. Studies in humans and mice have indicated that the synergy between BMP15 and GDF9 is primarily mediated by the bone morphogenetic protein type II receptor (BMPR2). The BMP15/GDF9 heterodimer needs to bind to the BMPR2-ALK4/5/7-ALK6 receptor complex to activate the SMAD2/3 signaling pathway. However, it is not clear which genes mediate and regulate the effects of the BMP15/GDF9 proteins on bovine cumulus cells (CCs). Methods: Our earlier study showed that BMPR2 is a gene that is directly targeted and regulated by miR-375. Therefore, we designed and synthesized an miR-375 mimics/inhibitor and regulated BMPR2 expression in bovine CCs by the overexpression or inhibition of miR-375. After the overexpression or inhibition of miR-375, the apoptosis rate of bovine CCs was measured by flow cytometry; changes in critical gene expression were measured by RT-qPCR and western blot assays; and the proliferation of bovine CCs was measured by CCK-8 assay. Results: In bovine CCs, the overexpression of miR-375 resulted in decreased BMPR2 and ALK7 expression, whereas the inhibition of miR-375 caused increased BMPR2 and ALK7 expression. The overexpression of miR-375 attenuated the proliferation ability and significantly increased the apoptosis rate of bovine CCs, whereas the inhibition of miR-375 did not significantly change the proliferation ability or apoptosis rate. Conclusions: BMPR2, a target of miR-375, is regulated by this molecule, thereby affecting expression of BMP15/GDF9 receptors, and the proliferation and apoptosis of bovine CCs.


Cellular Physiology and Biochemistry | 2015

MiR-378 Plays an Important Role in the Differentiation of Bovine Preadipocytes.

Siyuan Liu; Yang-Yang Zhang; Yan Gao; Lian-Jiang Zhang; Hongyan Chen; Qian Zhou; Menglong Chai; Qing-Ying Li; Hao Jiang; Bao Yuan; Lisheng Dai; Jiabao Zhang

Background: Adipocyte, the main cellular component of white adipose tissue, plays a vital role in energy balance in higher eukaryotes. In recent years, adipocytes have also been identified as a major endocrine organ involved in immunological responses, vascular diseases, and appetite regulation. In farm animals, fat content and categories are closely correlated with meat quality. MicroRNAs (miRNAs), a class of endogenous single-stranded non-coding RNA molecules, participate in the regulation of adipocyte differentiation and adipogenesis through regulating the transcription or translation of target mRNAs. MiR-378 plays an important role in a number of biological processes, including cell growth, cell differentiation, tumor cell survival and angiogenesis. Methods: In the present study, bioinformatics analysis and dual-luciferase reporter assay were used to identify and validate the target genes of miR-378. In vitro cell transfection, quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot analysis, Oil Red O staining, and triglyceride content measurement were conducted to analyze the effects of miR-378 on bovine preadipocyte differentiation. Results: MiR-378 was induced during adipocyte differentiation. In the differentiated adipocytes overexpressing miR-378, the volume of lipid droplets was enlarged, and the triglyceride content was increased. Moreover, the mRNA expression levels of the adipocyte differentiation marker genes, peroxisome proliferator-activated receptor gamma (PPARγ) and sterol regulatory element-binding protein (SREBP), were significantly elevated in the differentiated, mature adipocytes. In contrast, the mRNA expression level of preadipocyte factor 1 (Pref-1) was markedly reduced. E2F transcription factor 2 (E2F2) and Ras-related nuclear (RAN)-binding protein 10 (RANBP10) were the two target genes of miR-378. The mRNA expression levels of E2F2 and RANBP10 did not significantly change in bovine preadipocytes overexpressing miR-378. However, the protein expression levels of E2F2 and RANBP10 were markedly reduced. Conclusion: MiR-378 promoted the differentiation of bovine preadipocytes. E2F2 and RANBP10 were the two target genes of miR-378, and might involve in the effects of miR-378 on the bovine preadipocyte differentiation.


Molecular Biology Reports | 2011

Polymorphism of the prion protein gene (PRNP) in two Chinese indigenous cattle breeds

L. H. Qin; Y. M. Zhao; Y. H. Bao; W. L. Bai; J. Chong; G. L. Zhang; Jiabao Zhang; Zhihui Zhao

Prion protein (PRNP) gene has been located at position q17 of chromosome 13 in cattle. The polymorphisms of PRNP gene might be associated with BSE susceptibility. In the present work, we investigated the polymorphisms of PRNP gene, including SNP in exon 3, 23-bp indel in promoter region, 12-bp indel in intron 1 in 2 Chinese indigenous cattle breeds of northeast China. Eighty-six animals from Yanbian (34) and Chinese Red Steppes (52) were genotyped at PRNP locus by analyzing genomic DNA. A total of 4 single nucleotide polymorphism (SNP) sites were revealed in the PRNP gene exon 3 of the 2 cattle breeds investigated. Three of these SNPs were non-synonymous mutations that resulted in the amino acid exchanges (K119N, S154N, and M177V), and one is silent nucleotide substitutions (A234G). The two amino acid mutations of S154N and M177V were detected only in Yanbian with a very low frequency (0.0147), and they appears to be absent in Chinese Red Steppes. The average gene heterozygosity (He), effective allele numbers (Ne), Shannon’s information index (I) and polymorphism information content (PIC) were 0.3088, 1.5013, 0.3814 and 0.2000 in Yanbian, respectively, being relatively higher than that of Chinese Red Steppes (0.2885, 1.4985, 0.3462 and 0.1873, respectively). In 23-bp indel and 12-bp indel loci, three different genotypes were identified in both Yanbian and Chinese Red Steppes breeds. Based 23- and 12-bp indels, four haplotypes was constructed in the 2 Chinese cattle breeds, of which the 23-bp (−)/12-bp (−) was main haplotypes accounting for more than 50% of the total in both Yanbian and Chinese Red Steppes breeds. These results might be useful in understanding the genetic characteristics of PRNP gene in Chinese indigenous cattle breeds.


Cellular Physiology and Biochemistry | 2013

Silencing of ADIPOQ efficiently suppresses preadipocyte differentiation in porcine.

Yan Gao; Fujuan Li; Yonghong Zhang; Lisheng Dai; Hao Jiang; Huiyu Liu; Shumin Zhang; Chengzhen Chen; Jiabao Zhang

Aims: Our study aims to characterize the functions of the ADIPOQ gene in the process of fat deposition of pigs, thereby providing a basis for the use of this gene as a molecular marker for pork quality. Methods: We used healthy Junmu1 piglets less than 7 days of age to establish an in vitro culture system for porcine preadipocytes. Chemically synthesized short hairpin RNAs (shRNA) were transfected into porcine preadipocytes to silence the expression of the ADIPOQ gene. We monitored preadipocyte differentiation and determined the levels of the adipocyte differentiation transcription factors lipoprotein lipase (LPL), peroxisome proliferator-activated receptor γ (PPARγ) and adipocyte fatty acid binding protein (AP2) mRNAs to investigate the effects of ADIPOQ on the differentiation of porcine preadipocytes. Results: After transfection, the mRNA and protein levels of the ADIPOQ gene were significantly decreased (P < 0.01), the number of lipid droplets in the adipocytes was significantly reduced, the OD values reflecting the fat content were significantly decreased (P < 0.01), and the levels of LPL, PPARγ and AP2 were significantly reduced (P < 0.01). Conclusions: These results suggest that interference with ADIPOQ gene expression can inhibit the differentiation of porcine preadipocytes.


Cell Biology International | 2017

The possible FAT1-mediated apoptotic pathways in porcine cumulus cells†

Xinhui Wu; Yao Fu; Xu-Lei Sun; Chang Liu; Menglong Chai; Chengzhen Chen; Lisheng Dai; Yan Gao; Hao Jiang; Jiabao Zhang

Porcine cumulus cells are localized around oocytes and act as a specific type of granulosa that plays essential roles in the development and maturation of oocytes, the development and atresia of follicles, and the development of embryos. Studies of FAT1 have demonstrated its functions in cell–cell contact, actin dynamics, and cell growth suppression. To understand whether the FAT1 gene affects the apoptosis of porcine cumulus cells and to elucidate the mechanism of this potential action, FAT1 was knocked down using RNA interference. The lack of FAT1 resulted in stable expression of CTNNB, enhanced expression of cleaved CASP3, but decreased the BCL2/BAX ratios at both the mRNA and protein levels. These results indicated that FAT1 inhibited porcine cumulus cell apoptosis via different pathways. Taken together, these data provide new insights into the mechanisms of the association between FAT1 and porcine cumulus cell apoptosis.


Cellular Physiology and Biochemistry | 2014

The MBD4 Gene Plays an Important Role in Porcine Adipocyte Differentiation

Lian-Jiang Zhang; Ya-Nan Zhu; Yan Gao; Siyuan Liu; Bo Zhai; Changhong Li; Huiyu Liu; Jian Chen; Bao Yuan; Lisheng Dai; Jiabao Zhang

Background: MBD4 (methyl-CpG binding domain protein 4) is an important G: T glycosylase that can identify T-G mismatches. It plays a role in active demethylation through base excision repair. Overexpression of MBD4 gene can cause the demethylation of numerous genes, and the remethylation of MBD4-associated genes can occur when the MBD4 gene is knocked out. To date, the functions and regulatory mechanisms of the MBD4 gene in the differentiation of porcine preadipocytes have not been clearly established. Methods: Subcutaneous fat cells from 1- to 7-day-old Junmu-1 piglets were cultured in vitro, induced to differentiate, and then identified. A real-time fluorescence-based quantitative polymerase chain reaction (PCR) analysis was conducted to detect MBD4 messenger RNA (mRNA) expression. Cells were treated with MBD4-siRNA (small interfering RNA) and induced to differentiate. Changes in the lipid droplets were observed by oil red O staining. Changes in the mRNA and protein expression levels of MBD4 and the adipose differentiation-associated genes C/EBPα (CCAAT-enhancer-binding protein alpha), PPARγ (peroxisome proliferator-activated receptor gamma), and aP2 (adipocyte protein 2) were detected. In addition, the bisulfite sequencing method was used to detect changes in methylation in the promoters of certain genes associated with adipose differentiation. Results: Levels of MBD4 mRNA and protein expression varied with time over the course of the porcine adipocyte differentiation, with the highest levels of this expression observed on day two of the differentiation process. After silencing MBD4 and inducing differentiation, the production of lipid droplets decreased, the mRNA expression levels of C/EBPα, PPARγ, and aP2 were significantly reduced, and DNA methylation modification levels were significantly elevated in the examined promoter regions. Conclusion: The silencing of the MBD4 gene can influence the DNA methylation levels of preadipocyte differentiation-related genes and subsequently inhibit the differentiation of porcine preadipocytes.

Collaboration


Dive into the Jiabao Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nam-Hyung Kim

Chungbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge