Baogang Xu
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Baogang Xu.
ACS Nano | 2015
Rui Tang; Jianpeng Xue; Baogang Xu; Duanwen Shen; Gail Sudlow; Samuel Achilefu
The large size of many near-infrared (NIR) fluorescent nanoparticles prevents rapid extravasation from blood vessels and subsequent diffusion to tumors. This confines in vivo uptake to the peritumoral space and results in high liver retention. In this study, we developed a viscosity modulated approach to synthesize ultrasmall silver sulfide quantum dots (QDs) with distinct tunable light emission from 500 to 1200 nm and a QD core diameter between 1.5 and 9 nm. Conjugation of a tumor-avid cyclic pentapeptide (Arg-Gly-Asp-DPhe-Lys) resulted in monodisperse, water-soluble QDs (hydrodynamic diameter < 10 nm) without loss of the peptide’s high binding affinity to tumor-associated integrins (KI = 1.8 nM/peptide). Fluorescence and electron microscopy showed that selective integrin-mediated internalization was observed only in cancer cells treated with the peptide-labeled QDs, demonstrating that the unlabeled hydrophilic nanoparticles exhibit characteristics of negatively charged fluorescent dye molecules, which typically do not internalize in cells. The biodistribution profiles of intravenously administered QDs in different mouse models of cancer reveal an exceptionally high tumor-to-liver uptake ratio, suggesting that the small sized QDs evaded conventional opsonization and subsequent high uptake in the liver and spleen. The seamless tunability of the QDs over a wide spectral range with only a small increase in size, as well as the ease of labeling the bright and noncytotoxic QDs with biomolecules, provides a platform for multiplexing information, tracking the trafficking of single molecules in cells, and selectively targeting disease biomarkers in living organisms without premature QD opsonization in circulating blood.
Bioconjugate Chemistry | 2012
Walter J. Akers; Baogang Xu; Hyeran Lee; Gail Sudlow; Gregg B. Fields; Samuel Achilefu; W. Barry Edwards
We report a novel activatable NIR fluorescent probe for in vivo detection of cancer-related matrix metalloproteinase (MMP) activity. The probe is based on a triple-helical peptide substrate (THP) with high specificity for MMP-2 and MMP-9 relative to other members of the MMP family. MMP-2 and MMP-9 (also known as gelatinases) are specifically associated with cancer cell invasion and cancer-related angiogenesis. At the center of each 5 kDa peptide strand is a gelatinase sensitive sequence flanked by 2 Lys residues conjugated with NIR fluorescent dyes. Upon self-assembly of the triple-helical structure, the 3 peptide chains intertwine, bringing the fluorophores into close proximity and reducing fluorescence via quenching. Upon enzymatic cleavage of the triple-helical peptide, 6 labeled peptide chains are released, resulting in an amplified fluorescent signal. The fluorescence yield of the probe increases 3.8-fold upon activation. Kinetic analysis showed a rate of LS276-THP hydrolysis by MMP-2 (k(cat)/K(M) = 30,000 s(-1) M(-1)) similar to that of MMP-2 catalysis of an analogous fluorogenic THP. Administration of LS276-THP to mice bearing a human fibrosarcoma xenografted tumor resulted in a tumor fluorescence signal more than 5-fold greater than that of muscle. This signal enhancement was reduced by treatment with the MMP inhibitor Ilomostat, indicating that the observed tumor fluorescence was indeed enzyme mediated. These results are the first to demonstrate that triple-helical peptides are suitable for highly specific in vivo detection of tumor-related MMP-2 and MMP-9 activity.
Molecular Imaging | 2009
W. Barry Edwards; Walter J. Akers; Yunpeng Ye; Philip P. Cheney; Sharon Bloch; Baogang Xu; Richard Laforest; Samuel Achilefu
Integrins, particularly the αvβ3 heterodimers, play important roles in tumor-induced angiogenesis and invasiveness. To image the expression pattern of the αvβ3 integrin in tumors through a multimodality imaging paradigm, we prepared a cyclic RGDyK peptide analogue (LS308) bearing a tetraazamacrocycle 1,4,7,10-tetraazacyclododecane-N, N′, N″, N‴-tetraacetic acid (DOTA) and a lipophilic near-infrared (NIR) fluorescent dye cypate. The αvβ3 integrin binding affinity and the internalization properties of LS308 mediated by the αvβ3 integrin in 4t1luc cells were investigated by receptor binding assay and fluorescence microscopy, respectively. The in vivo distribution of 111In-labeled LS308 in a 4t1luc tumor-bearing mouse model was studied by fluorescence, bioluminescence, planar gamma, and single-photon emission computed tomography (SPECT). The results show that LS308 has high affinity for αvβ3 integrin and internalized preferentially via the αvβ3 integrin-mediated endocytosis in 4t1luc cells. We also found that LS308 selectively accumulated in αvβ3-positve tumors in a receptor-specific manner and was visualized by the four imaging methods. Whereas the endogenous bioluminescence imaging identified the ensemble of the tumor tissue, the fluorescence and SPECT methods with the exogenous contrast agent LS308 reported the local expression of αvβ3 integrin. Thus, the multimodal imaging approach could provide important complementary diagnostic information for monitoring the efficacy of new antiangiogenic drugs.
Angewandte Chemie | 2014
Naveen Gandra; Christopher Portz; Limei Tian; Rui Tang; Baogang Xu; Samuel Achilefu; Srikanth Singamaneni
Owing to their applications in biodetection and molecular bioimaging, near-infrared (NIR) fluorescent dyes are being extensively investigated. Most of the existing NIR dyes exhibit poor quantum yield, which hinders their translation to preclinical and clinical settings. Plasmonic nanostructures are known to act as tiny antennae for efficiently focusing the electromagnetic field into nanoscale volumes. The fluorescence emission from NIR dyes can be enhanced by more than thousand times by precisely placing them in proximity to gold nanorods. We have employed polyelectrolyte multilayers fabricated using layer-by-layer assembly as dielectric spacers for precisely tuning the distance between gold nanorods and NIR dyes. The aspect ratio of the gold nanorods was tuned to match the longitudinal localized surface plasmon resonance wavelength with the absorption maximum of the NIR dye to maximize the plasmonically enhanced fluorescence. The design criteria derived from this study lays the groundwork for ultrabright fluorescence bullets for in vitro and in vivo molecular bioimaging.
Journal of Biomedical Optics | 2013
Yang Pu; Jianpeng Xue; W. B. Wang; Baogang Xu; Yueqing Gu; Rui Tang; Ellen Ackerstaff; Jason A. Koutcher; Samuel Achilefu; R. R. Alfano
Abstract. The spectral changes of native fluorophores among normal fibroblasts and cancer cell lines of different metastatic ability are investigated by fluorescence spectroscopy. The normal (fibroblast), moderately metastatic (DU-145), and advanced metastatic (PC-3) cell lines were each selectively excited at 300 nm, and their fluorescence emission spectra are analyzed using principal component analysis to explore the differences of the relative contents of tryptophan and reduced nicotinamide adenine dinucleotide in these cell lines. The results show that the tryptophan emission featured predominantly in the fluorescence spectra of the advanced metastatic cancer cells in comparison with the moderately metastatic cancer and normal cells.
The Journal of Nuclear Medicine | 2013
Metasebya Solomon; Ralph E. Nothdruft; Walter J. Akers; W. Barry Edwards; Kexian Liang; Baogang Xu; Gail P. Suddlow; Hamid Deghani; Yuan-Chuan Tai; Adam T. Eggebrecht; Samuel Achilefu; Joseph P. Culver
Spatial and temporal coregistration of nuclear and optical images can enable the fusion of the information from these complementary molecular imaging modalities. A critical challenge is in integrating the optical and nuclear imaging hardware. Flexible fiber–based fluorescence-mediated tomography (FMT) systems provide a viable solution. The various bore sizes of small-animal nuclear imaging systems can potentially accommodate the FMT fiber imaging arrays. In addition, FMT imaging facilitates coregistration of the nuclear and optical contrasts in time. Herein, we combine a fiber-based FMT system with a preclinical SPECT/CT platform. Feasibility of in vivo imaging is demonstrated by tracking a monomolecular multimodal imaging agent (MOMIA) during transport from the forepaw to the axillary lymph node region of a rat. Methods: The fiber-based, video-rate FMT imaging system is composed of 12 sources (785- and 830-nm laser diodes) and 13 detectors. To maintain high temporal sampling, the system simultaneously acquires ratio–metric data at each detector. A 3-dimensional finite element model derived from CT projections provides anatomically based light propagation modeling. Injection of a MOMIA intradermally into the forepaw of rats provided spatially and temporally coregistered nuclear and optical contrasts. FMT data were acquired concurrently with SPECT and CT data. The incorporation of SPECT data as a priori information in the reconstruction of FMT data integrated both optical and nuclear contrasts. Results: Accurate depth localization of phantoms with different thicknesses was accomplished with an average center-of-mass error of 4.1 ± 2.1 mm between FMT and SPECT measurements. During in vivo tests, fluorescence and radioactivity from the MOMIA were colocalized in spatially coincident regions with an average center-of-mass error of 2.68 ± 1.0 mm between FMT and SPECT for axillary lymph node localization. Intravital imaging with surgical exposure of the lymph node validated the localization of the optical contrast. Conclusion: The feasibility of integrating a fiber-based, video-rate FMT system with a commercial preclinical SPECT/CT platform was established. These coregistered FMT and SPECT/CT results with MOMIAs may facilitate the development of the next generation of preclinical and clinical multimodal optical–nuclear platforms for a broad array of imaging applications and help elucidate the underlying biologic processes relevant to cancer diagnosis and therapy monitoring.
Bioorganic & Medicinal Chemistry Letters | 2011
Yunpeng Ye; Baogang Xu; Gregory V. Nikiforovich; Sharon Bloch; Samuel Achilefu
We synthesized disulfide-based cyclic RGD pentapeptides bearing a near-infrared fluorescent dye (cypate), represented by cypate-c(CRGDC) (1) for integrin-targeted optical imaging. These compounds were compared with the traditional lactam-based cyclic RGD counterpart, cypate-c(RGDfK) (2). Molecular modeling suggests that the binding affinity of 2 to integrin α(v)β(3) is an order of magnitude higher than that of 1. This was confirmed experimentally, which further showed that substitution of Gly with Pro, Val and Tyr in 1 remarkably hampered the α(v)β(3) binding. Interestingly, cell microscopy with A549 cells showed that 1 exhibited higher cellular staining than 2. These results indicate that factors other than receptor binding affinity to α(v)β(3) dimeric proteins mediate cellular uptake. Consequently, 1 and its analogs may serve as valuable molecular probes for investigating the selectivity and specificity of integrin targeting by optical imaging.
Molecules | 2014
Xuan Zhang; Jamee Bresee; Philip P. Cheney; Baogang Xu; Manishabrata Bhowmick; Mare Cudic; Gregg B. Fields; Wilson Barry Edwards
Matrix metalloproteinases (MMP) 2 and 9, the gelatinases, have consistently been associated with tumor progression. The development of gelatinase-specific probes will be critical for identifying in vivo gelatinoic activity to understand the molecular role of the gelatinases in tumor development. Recently, a self-assembling homotrimeric triple-helical peptide (THP), incorporating a sequence from type V collagen, with high substrate specificity to the gelatinases has been developed. To determine whether this THP would be suitable for imaging protease activity, 5-carboxyfluorescein (5FAM) was conjugated, resulting in 5FAM3-THP and 5FAM6-THP, which were quenched up to 50%. 5FAM6-THP hydrolysis by MMP-2 and MMP-9 displayed kcat/KM values of 1.5 × 104 and 5.4 × 103 M−1 s−1, respectively. Additionally 5FAM6-THP visualized gelatinase activity in gelatinase positive HT-1080 cells, but not in gelatinase negative MCF-7 cells. Furthermore, the fluorescence in the HT-1080 cells was greatly attenuated by the addition of a MMP-2 and MMP-9 inhibitor, SB-3CT, indicating that the observed fluorescence release was mediated by gelatinase proteolysis and not non-specific proteolysis of the THPs. These results demonstrate that THPs fully substituted with fluorophores maintain their substrate specificity to the gelatinases in human cancer cells and may be useful in in vivo molecular imaging of gelatinase activity.
Scientific Reports | 2013
Duanwen Shen; Mingfeng Bai; Rui Tang; Baogang Xu; Xiaoming Ju; Richard G. Pestell; Samuel Achilefu
Using a newly developed near-infrared (NIR) dye that fluoresces at two different wavelengths (dichromic fluorescence, DCF), we discovered a new fluorescent substrate for Akt, also known as protein kinase B, and a method to quantitatively report this enzymes activity in real time. Upon insulin activation of cellular Akt, the enzyme multi-phosphorylated a single serine residue of a diserine DCF substrate in a time-dependent manner, culminating in monophospho- to triphospho-serine products. The NIR DCF probe was highly selective for the Akt1 isoform, which was demonstrated using Akt1 knockout cells derived from MMTV-ErbB2 transgenic mice. The DCF mechanism provides unparalleled potential to assess the stimulation, sustainability, and reversibility of Akt activation longitudinally. Importantly, NIR fluorescence provides a pathway to translate findings from cells to living organisms, a condition that could eventually facilitate the use of these probes in humans.
RSC Advances | 2013
Mingzhou Zhou; Xuan Zhang; Mingfeng Bai; Duanwen Shen; Baogang Xu; Jeffery Kao; Xia Ge; Samuel Achilefu
A clickable pyrrolopyrrole cyanine (PPCy) dye was synthesized by incorporating an alkyne moiety, followed by click reaction with azide-functionalized molecules of different polarities. The clickable dyes are readily amenable to labelling diverse molecules and exhibit an exceptionally high photostability and an impressive fluorescence quantum yield.