Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunpeng Ye is active.

Publication


Featured researches published by Yunpeng Ye.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression

Samuel Achilefu; Sharon Bloch; Mary A. Markiewicz; Tuoxiu Zhong; Yunpeng Ye; Richard B. Dorshow; Britton Chance; Kexian Liang

Integrins mediate many biological processes, including tumor-induced angiogenesis and metastasis. The arginine–glycine–aspartic acid (RGD) peptide sequence is a common recognition motif by integrins in many proteins and small peptides. While evaluating a small library of RGD peptides for imaging αVβ3 integrin (ABI)-positive tumor cell line (A549) by optical methods, we discovered that conjugating a presumably inactive linear hexapeptide GRDSPK with a near-infrared carbocyanine molecular probe (Cypate) yielded a previously undescribed bioactive ligand (Cyp-GRD) that targets ABI-positive tumors. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay with A549 cells showed that Cyp-GRD was not cytotoxic up to 100 μM in cell culture. The compound was internalized by cells, and this internalization was blocked by coincubation with a cyclic RGD peptide (cyclo[RGDfV], f is d-phenylalanine) that binds ABI with high affinity. In vivo, Cyp-GRD selectively accumulated in tumors relative to surrounding normal tissues. Blocking studies with cyclo[RGDfV] inhibited the in vivo uptake of Cyp-GRD, suggesting that both compounds target the same active site of the protein. A strong correlation between the Cyp-GRD peptide and mitochondrial NADH concentration suggests that the new molecule could also report on the metabolic status of cells ex vivo. Interestingly, neither a Cypate-labeled linear RGD peptide nor an 111In-labeled DOTA-GRD conjugate was selectively retained in the tumor. These results clearly demonstrate the synergistic effects of Cypate and GRD peptide for molecular recognition of integrin expression and suggest the potential of using carbocyanines as optical scaffolds for designing biologically active molecules.


Nuclear Medicine and Biology | 2009

64Cu-Labeled CB-TE2A and diamsar-conjugated RGD peptide analogs for targeting angiogenesis: comparison of their biological activity

Lihui Wei; Yunpeng Ye; Thaddeus J. Wadas; Jason S. Lewis; Michael J. Welch; Samuel Achilefu; Carolyn J. Anderson

OBJECTIVES The alpha(v)beta(3) integrin is a cell adhesion molecule known to be involved in stages of angiogenesis and metastasis. In this study, the chelators CB-TE2A and diamsar were conjugated to cyclic RGDyK and RGDfD and the biological properties of (64)Cu-labeled peptides were compared. METHODS CB-TE2A-c(RGDyK) and diamsar-c(RGDfD) were labeled with (64)Cu in 0.1 M NH(4)OAc (pH=8) at 95 degrees C and 25 degrees C, respectively. PET and biodistribution studies were carried out on M21 (alpha(v)beta(3)-positive) and M21L (alpha(v)-negative) melanoma-bearing mice. Binding affinity of the Cu-chelator-RGD peptides to alpha(v)beta(3) integrins was determined by a competitive binding affinity assay. RESULTS Biological studies showed higher concentration of (64)Cu-CB-TE2A-c(RGDyK) in M21 tumor compared to M21L tumor at 1 and 4 h pi. Tumor concentration of (64)Cu-CB-TE2A-c(RGDyK) was higher than that of (64)Cu-diamsar-c(RGDfD). The difference is not due to differing binding affinities, since similar values were obtained for the agents. Compared to (64)Cu-diamsar-c(RGDfD), there is more rapid liver and blood clearance of (64)Cu-CB-TE2A-c(RGDyK), resulting in a lower liver and blood concentration at 24 h pi. Both (64)Cu-labeled RGD peptides show similar binding affinities to alpha(v)beta(3). The differences in their biodistribution properties are likely related to different linkers, charges and lipophilicities. The M21 tumor is clearly visualized with (64)Cu-CB-TE2A-c(RGDyK) by microPET imaging. Administration of c(RGDyK) as a block significantly reduced the tumor concentration; however, the radioactivity background was also decreased by the blocking dose. CONCLUSIONS Both (64)Cu-CB-TE2A-c(RGDyK) and (64)Cu-diamsar-c(RGDfD) are potential candidates for imaging tumor angiogenesis. For diamsar-c(RGDfD), a linker may be needed between the Cu-chelator moiety and the RGD peptide to achieve optimal in vivo tumor concentration and clearance from nontarget organs.


Journal of Biomedical Optics | 2009

In vivo fluorescence lifetime tomography

Ralph E. Nothdurft; Sachin V. Patwardhan; Walter J. Akers; Yunpeng Ye; Samuel Achilefu; Joseph P. Culver

Local molecular and physiological processes can be imaged in vivo through perturbations in the fluorescence lifetime (FLT) of optical imaging agents. In addition to providing functional information, FLT methods can quantify specific molecular events and multiplex diagnostic and prognostic information. We have developed a fluorescence lifetime diffuse optical tomography (DOT) system for in vivo preclinical imaging. Data is captured using a time-resolved intensified charge coupled device (ICCD) system to measure fluorescence excitation and emission in the time domain. Data is then converted to the frequency domain, and we simultaneously reconstruct images of yield and lifetime using an extension to the normalized Born approach. By using differential phase measurements, we demonstrate DOT imaging of short lifetimes (from 350 ps) with high precision (+/-5 ps). Furthermore, this system retains the efficiency, speed, and flexibility of transmission geometry DOT. We demonstrate feasibility of FLT-DOT through a progressive series of experiments. Lifetime range and repeatability are first measured in phantoms. Imaging of subcutaneous implants then verifies the FLT-DOT approach in vivo in the presence of inhomogeneous optical properties. Use in a common research scenario is ultimately demonstrated by imaging accumulation of a targeted near-infrared (NIR) fluorescent-labeled peptide probe (cypate-RGD) in a mouse with a subcutaneous tumor.


Molecular Imaging | 2009

Multimodal imaging of integrin receptor-positive tumors by bioluminescence, fluorescence, gamma scintigraphy, and single-photon emission computed tomography using a cyclic RGD peptide labeled with a near-infrared fluorescent dye and a radionuclide.

W. Barry Edwards; Walter J. Akers; Yunpeng Ye; Philip P. Cheney; Sharon Bloch; Baogang Xu; Richard Laforest; Samuel Achilefu

Integrins, particularly the αvβ3 heterodimers, play important roles in tumor-induced angiogenesis and invasiveness. To image the expression pattern of the αvβ3 integrin in tumors through a multimodality imaging paradigm, we prepared a cyclic RGDyK peptide analogue (LS308) bearing a tetraazamacrocycle 1,4,7,10-tetraazacyclododecane-N, N′, N″, N‴-tetraacetic acid (DOTA) and a lipophilic near-infrared (NIR) fluorescent dye cypate. The αvβ3 integrin binding affinity and the internalization properties of LS308 mediated by the αvβ3 integrin in 4t1luc cells were investigated by receptor binding assay and fluorescence microscopy, respectively. The in vivo distribution of 111In-labeled LS308 in a 4t1luc tumor-bearing mouse model was studied by fluorescence, bioluminescence, planar gamma, and single-photon emission computed tomography (SPECT). The results show that LS308 has high affinity for αvβ3 integrin and internalized preferentially via the αvβ3 integrin-mediated endocytosis in 4t1luc cells. We also found that LS308 selectively accumulated in αvβ3-positve tumors in a receptor-specific manner and was visualized by the four imaging methods. Whereas the endogenous bioluminescence imaging identified the ensemble of the tumor tissue, the fluorescence and SPECT methods with the exogenous contrast agent LS308 reported the local expression of αvβ3 integrin. Thus, the multimodal imaging approach could provide important complementary diagnostic information for monitoring the efficacy of new antiangiogenic drugs.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

Targeting of ανβ3-Integrins Expressed on Tumor Tissue and Neovasculature Using Fluorescent Small Molecules and Nanoparticles

Walter J. Akers; Zongren Zhang; Mikhail Y. Berezin; Yunpeng Ye; Anthony Agee; Kevin Guo; Ralph W. Fuhrhop; Samuel A. Wickline; Gregory M. Lanza; Samuel Achilefu

AIM Receptor-specific small molecules and nanoparticles are widely used in molecular imaging of tumors. Although some studies have described the relative strengths and weaknesses of the two approaches, reports of a direct comparison and analysis of the two strategies are lacking. Herein, we compared the tumor-targeting characteristics of a small near-infrared fluorescent compound (cypate-peptide conjugate) and relatively large perfluorocarbon-based nanoparticles (250 nm diameter) for imaging alpha(nu)beta(3)-integrin receptor expression in tumors. MATERIALS & METHODS Near-infrared fluorescent small molecules and nanoparticles were administered to living mice bearing subcutaneous or intradermal syngeneic tumors and imaged with whole-body and high-resolution optical imaging systems. RESULTS The nanoparticles, designed for vascular constraint, remained within the tumor vasculature while the small integrin-avid ligands diffused into the tissue to target integrin expression on tumor and endothelial cells. Targeted small-molecule and nanoparticle contrast agents preferentially accumulated in tumor tissue with tumor-to-muscle ratios of 8 and 7, respectively, compared with 3 for nontargeted nanoparticles. CONCLUSION Fluorescent small molecular probes demonstrate greater overall early tumor contrast and rapid visualization of tumors, but the vascular-constrained nanoparticles are more selective for detecting cancer-induced angiogenesis. A combination of both imaging agents provides a strategy to image and quantify integrin expression in tumor tissue and tumor-induced neovascular systems.


Bioorganic & Medicinal Chemistry Letters | 2011

Exploring new near-infrared fluorescent disulfide-based cyclic RGD peptide analogs for potential integrin-targeted optical imaging.

Yunpeng Ye; Baogang Xu; Gregory V. Nikiforovich; Sharon Bloch; Samuel Achilefu

We synthesized disulfide-based cyclic RGD pentapeptides bearing a near-infrared fluorescent dye (cypate), represented by cypate-c(CRGDC) (1) for integrin-targeted optical imaging. These compounds were compared with the traditional lactam-based cyclic RGD counterpart, cypate-c(RGDfK) (2). Molecular modeling suggests that the binding affinity of 2 to integrin α(v)β(3) is an order of magnitude higher than that of 1. This was confirmed experimentally, which further showed that substitution of Gly with Pro, Val and Tyr in 1 remarkably hampered the α(v)β(3) binding. Interestingly, cell microscopy with A549 cells showed that 1 exhibited higher cellular staining than 2. These results indicate that factors other than receptor binding affinity to α(v)β(3) dimeric proteins mediate cellular uptake. Consequently, 1 and its analogs may serve as valuable molecular probes for investigating the selectivity and specificity of integrin targeting by optical imaging.


FEBS Letters | 2007

Modulation of nuclear internalization of Tat peptides by fluorescent dyes and receptor-avid peptides

Duanwen Shen; Kexian Liang; Yunpeng Ye; Elizabeth Tetteh; Samuel Achilefu

The nuclear internalization of biomolecules by Tat peptide provides a mechanism to deliver drugs to cells. However, translocation of molecular imaging probes to the nucleus may induce undesirable mutagenesis. To assess the feasibility of retaining its cell permeating effect without nuclear translocation, Tat‐peptide was conjugated with a somatostatin receptor (STR)‐avid ligand (Oct) and labeled with fluorescent dyes. The results show that Tat‐Oct‐5‐FAM (fluorescein 5′‐carboxylic acid) remained in the cytoplasm of STR‐positive AR42J cells. Co‐incubation of Tat‐Oct‐5‐FAM with ATP induced nuclear translocation. These data suggest that both dye and Oct‐STR endocytosis complex could modulate nuclear internalization of Tat peptides.


PLOS ONE | 2014

Somatostatin Analogues for Receptor Targeted Photodynamic Therapy

Slávka Kaščáková; Leo J. Hofland; Henriëtte S. de Bruijn; Yunpeng Ye; Samuel Achilefu; Katy van der Wansem; Angélique van der Ploeg van den Heuvel; Peter M. van Koetsveld; Michael P. Brugts; Aart-Jan van der Lelij; Henricus J. C. M. Sterenborg; Timo L.M. ten Hagen; Dominic J. Robinson; Martin van Hagen

Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2 + AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate.


Biomedical optics | 2004

Targeting the expression of integrin receptors in tumors

Sharon Bloch; Kexian Liang; Richard B. Dorshow; Yunpeng Ye; Samuel Achilefu

Expression of integrin αvβ3 is upregulated in a number of cancers including colon, pancreas, lung and breast. Additionally, αvβ3 integrin expression has been linked to tumor metastasis and targeting this cell surface protein could provide a viable approach to image and evaluate the metastatic potential of tumors. Accordingly, we evaluated the selective retention of some near infrared (NIR) fluorescent probes in nude mice bearing A549 lung cancer xenograft that express αvβ3 integrin. Our preliminary results indicate that a novel NIR probe designed to target this integrin selectively accumulated in A549 tumor while other non-integrin specific probes were not retained in the tumor. Blocking studies show that tumor uptake of the probe is mediated by αvβ3 integrin receptor.


Bioorganic & Medicinal Chemistry Letters | 2012

Near-infrared Fluorescent Divalent RGD Ligand for Integrin αvβ3-targeted Optical Imaging

Yunpeng Ye; Walter J. Akers; Baogang Xu; Sharon Bloch; Charles Amoatey Odonkor; Samuel Achilefu

A new near-infrared fluorescent compound containing two cyclic RGD motifs, cypate-[c(RGDfK)](2) (1), was synthesized based on a carbocyanine fluorophore bearing two carboxylic acid groups (cypate) for integrin α(v)β(3)-targeting. Compared with its monovalent counterpart cypate-c(RGDfK) (2), 1 exhibited remarkable improvements in integrin α(v)β(3) binding affinity and tumor uptake in nude mice of A549. The results suggest that cypate-linked divalent ligands can serve as an important molecular platform for exploring receptor-targeted optical imaging and treatment of various diseases.

Collaboration


Dive into the Yunpeng Ye's collaboration.

Top Co-Authors

Avatar

Samuel Achilefu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Sharon Bloch

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Baogang Xu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Walter J. Akers

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kexian Liang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gregory V. Nikiforovich

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mikhail Y. Berezin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Zongren Zhang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Carolyn J. Anderson

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar

Duanwen Shen

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge