Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baojian Wu is active.

Publication


Featured researches published by Baojian Wu.


Journal of Pharmaceutical Sciences | 2011

First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics

Baojian Wu; Kaustubh H. Kulkarni; Sumit Basu; Shuxing Zhang; Ming Hu

Glucuronidation mediated by UDP-glucuronosyltransferases (UGTs) is a significant metabolic pathway that facilitates efficient elimination of numerous endobiotics and xenobiotics, including phenolics. UGT genetic deficiency and polymorphisms or inhibition of glucuronidation by concomitant use of drugs are associated with inherited physiological disorders or drug-induced toxicities. Moreover, extensive glucuronidation can be a barrier to oral bioavailability as the first-pass glucuronidation (or premature clearance by UGTs) of orally administered agents usually results in the poor oral bioavailability and lack of efficacies. This review focused on the first-pass glucuronidation of phenolics including natural polyphenols and pharmaceuticals. The complexity of UGT-mediated metabolism of phenolics is highlighted with species-, gender-, organ- and isoform-dependent specificity, as well as functional compensation between UGT1A and 2B subfamily. In addition, recent advances are discussed with respect to the mechanisms of enzymatic actions, including the important properties such as binding pocket size and phosphorylation requirements.


Drug Metabolism and Disposition | 2011

Enhancement of Oral Bioavailability of 20(S)-Ginsenoside Rh2 through Improved Understanding of Its Absorption and Efflux Mechanisms

Zhen Yang; Song Gao; Jing-Rong Wang; Taijun Yin; Yang Teng; Baojian Wu; Ming You; Zhi-Hong Jiang; Ming Hu

The development of 20(S)-ginsenoside Rh2 (Rh2s) as a chemoprevention agent is limited by its low oral bioavailability. The goals of this study were to determine the mechanisms responsible for its poor oral absorption and to improve its bioavailability by overcoming the barrier to its absorption. Comprehensive studies were conducted using the following models: 1) monolayers of Caco-2, parental, and multidrug resistance gene (MDR1)-overexpressing Madin-Darby canine kidney II (MDCKII) cells; 2) pharmacokinetics in wild-type (WT) FVB, MDR1a/b knockout [MDR1a/b(−/−)] FVB, and A/J mice; and 3) intestinal perfusion in WT, MDR1a/b(−/−) FVB, and A/J mice. Two P-glycoprotein (P-gp) inhibitors, verapamil and cyclosporine A, substantially decreased the efflux ratio of Rh2s from 28.5 to 1.0 and 1.2, respectively, in Caco-2 cells. The intracellular concentrations of Rh2s were also significantly increased (2.3- and 3.9-fold) in the presence of inhibitors. Similar results were obtained when transcellular transport of Rh2s were determined using MDR1-overexpressing MDCKII cells in the absence or presence of cyclosporine A. Compared with WT mice, the plasma Cmax and AUC0–∞ of Rh2s were substantially increased by 17- and 23-fold in MDR1a/b(−/−) FVB mice, respectively. In the A/J mice, the oral bioavailability of Rh2s (0.94% at 5 mg/kg and 0.52% at 20 mg/kg) was substantially increased by P-gp inhibitor to 33.18 and 27.14%, respectively. As expected, deletion or inhibition of P-gp significantly increased absorption and steady-state plasma concentration of Rh2s in a mouse intestinal perfusion model. In conclusion, Rh2s is a good substrate of P-gp, and inhibition of P-gp can significantly enhance its oral bioavailability.


Current Drug Metabolism | 2011

Regioselective Sulfation and Glucuronidation of Phenolics: Insights into the Structural Basis

Baojian Wu; Sumit Basu; Shengnan Meng; Xiaoqiang Wang; Ming Hu

The phase II metabolism sulfation and glucuronidation, mediated by sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs) respectively, are significant metabolic pathways for numerous endo-and xenobiotics. Understanding of SULT/UGT substrate specificity including regioselectivity (i.e., position preference) is of great importance in predicting contribution of sulfation/ glucuronidation to drug and metabolite disposition in vivo. This review summarizes regioselective sulfation and glucuronidation of phenolic compounds with multiple hydroxyl (OH) groups as the potential conjugation sites. The strict regioselective patterns are highlighted for several SULT and UGT isoforms towards flavonoids, a large class of natural polyphenols. To seek for a molecular-level explanation, the enzyme structures (i.e., SULT crystal structures and a homology-modeled UGT structure) combined with molecular docking are employed. In particular, the structural basis for regioselective metabolism of flavonoids by SULT1A3 and UGT1A1 is discussed. It is concluded that the regioselective nature of these phase II enzymes is determined by the size and shape of the binding pocket. While the molecular structures of the enzymes can be used to explain regioselective metabolism regarding the binding property, predicting the turnover at different positions remains a particularly difficult task.


Drug Metabolism Reviews | 2012

Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling

Dong Dong; Baojian Wu; Diana Chow; Ming Hu

Enormous efforts toward predicting the metabolic fate of a drug have been driven by the high attrition rate in drug development. To accelerate such efforts, it is critical to elucidate the molecular mechanisms of drug recognition by drug-metabolizing enzymes. Therefore, it is not surprising that an increasing number of crystal structures have been determined (by X-ray crystallography) and numerous insightful in silico (computational) models have been established for the most important metabolic enzymes, cytochrome P450s (CYPs). In this review, we provide a detailed analysis of the available crystal structures for CYPs to reveal the structural features and protein flexibility determining substrate selectivity. The ligand-based in silico models (including pharmacophore and molecular field analysis models) are also discussed, with a focus on their ability to characterize the structural features of the substrates for various CYP isoforms.


Journal of Pharmacology and Experimental Therapeutics | 2011

Three-Dimensional Quantitative Structure-Activity Relationship Studies on UGT1A9-Mediated 3-O-Glucuronidation of Natural Flavonols Using a Pharmacophore-Based Comparative Molecular Field Analysis Model

Baojian Wu; John Kenneth Morrow; Rashim Singh; Shuxing Zhang; Ming Hu

Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., Km, Vmax, intrinsic clearance (CLint) = Vmax/Km] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters (Km, Vmax, CLint) were obtained. The observed Km, Vmax, and CLint values of 3-O-glucuronidation ranged from 0.04 to 0.68 μM, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of Vmax and CLint, respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities (Vmax model: q2 = 0.738, r2 = 0.976, rpred2 = 0.735; CLint model: q2 = 0.561, r2 = 0.938, rpred2 = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9.


Drug Metabolism Reviews | 2011

Substrate inhibition kinetics in drug metabolism reactions.

Baojian Wu

Inhibition of enzyme activity at high substrate concentrations, so-called “substrate inhibition,” is commonly observed and has been recognized in drug metabolism reactions since the last decade. Although the importance of such “atypical” kinetics in vivo remains poorly understood, a substrate with substrate inhibition kinetics has been shown to unconventionally alter the metabolism of other substrates. In recent years, it is becoming increasingly evident that the mechanisms for substrate inhibition are highly complex, which are possibly contributed by multiple (at least two) binding sites within the enzyme protein, the formation of a ternary dead-end enzyme complex, and/or the ligand-induced changes in enzyme conformation. This review primarily discusses the mechanisms for substrate inhibition displayed by the important drug-metabolizing enzymes, such as cytochrome p450s, UDP-glucuronyltransferases, and sulfotransferases. Kinetic modeling of substrate inhibition in the absence or presence of a modifier is another central issue in this review because of its importance in the determination of kinetic parameters and in vitro/in vivo predictions.


Drug Metabolism and Disposition | 2012

UDP-Glucuronosyltransferase (UGT) 1A9-Overexpressing HeLa Cells Is an Appropriate Tool to Delineate the Kinetic Interplay between Breast Cancer Resistance Protein (BRCP) and UGT and to Rapidly Identify the Glucuronide Substrates of BCRP

Wen Jiang; Beibei Xu; Baojian Wu; Rong Yu; Ming Hu

The interplay between phase II enzymes and efflux transporters leads to extensive metabolism and low bioavailability for flavonoids. To investigate the simplest interplay between one UDP-glucuronosyltransferase isoform and one efflux transporter in flavonoid disposition, engineered HeLa cells stably overexpressing UGT1A9 were developed, characterized, and further applied to investigate the metabolism of two model flavonoids (genistein and apigenin) and excretion of their glucuronides. The results indicated that the engineered HeLa cells overexpressing UGT1A9 rapidly excreted the glucuronides of genistein and apigenin. The kinetic characteristics of genistein or apigenin glucuronidation were similar with the use of UGT1A9 overexpressed in HeLa cells or the commercially available UGT1A9. Small interfering (siRNA)-mediated UGT1A9 silencing resulted in a substantial decrease in glucuronide excretion (>75%, p < 0.01). Furthermore, a potent inhibitor of breast cancer resistance protein (BCRP), 3-(6-isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indol-3-yl)-propionic acid tert-butyl ester (Ko143), caused, in a dose-dependent manner, a substantial and marked reduction of the clearance (74–94%, p < 0.01), and a substantial increase in the intracellular glucuronide levels (4–8-fold, p < 0.01), resulting in a moderate decrease in glucuronide excretion (19–59%, p < 0.01). In addition, a significant, albeit moderate, reduction in the fraction of genistein metabolized (fmet) in the presence of Ko143 was observed. In contrast, leukotriene C4 and siRNA against multidrug resistance protein (MRP) 2 and MRP3 did not affect excretion of flavonoid glucuronides. In conclusion, the engineered HeLa cells overexpressing UGT1A9 is an appropriate model to study the kinetic interplay between UGT1A9 and BCRP in the phase II disposition of flavonoids. This simple cell model should also be very useful to rapidly identify whether a phase II metabolite is the substrate of BCRP.


Journal of Pharmaceutical Sciences | 2012

Use of physiologically based pharmacokinetic models to evaluate the impact of intestinal glucuronide hydrolysis on the pharmacokinetics of aglycone.

Baojian Wu

Drug elimination via glucuronidation pathway is a complex process involving glucuronide excretion. Glucuronide excreted into the gut lumen either directly from the enterocytes or from the hepatobiliary route can be recovered back to the precursor (aglycone) through bacteria-mediated hydrolysis. As a result, the pharmacokinetics [e.g., plasma terminal half-life (T(1/2))] of aglycone might be altered. Here, impact of intestinal glucuronide hydrolysis on the pharmacokinetics of aglycone is evaluated using physiologically based pharmacokinetic (PBPK) models with liver and/or intestine as eliminating organs. It is found that compared with its absence, the presence of intestinal glucuronide hydrolysis leads to increases in the oral systemic bioavailability (F(sys)) of aglycone. The magnitude of fold increase is positively correlated with the level of metabolism, as metabolic clearance mainly contributes to recycled amount of glucuronide. Although F(sys) is independent of the glucuronide efflux in a traditional model and a segregated-flow model of the intestine, dependence of F(sys) on the glucuronide efflux can be observed in a segmental segregated-flow model of the intestine and whole-body PBPK models. Interestingly, when the ratio of apical versus basolateral efflux intrinsic clearances (of glucuronide) is fixed, their effects on the intestinal bioavailability and F(sys) cease to exist. In addition, glucuronide hydrolysis can lead to a significantly delayed elimination of the aglycone as evidenced by a prolonged (e.g., a 2.1-fold increase) T(1/2). Surprisingly, when a pharmacokinetic profile for aglycone is simulated with a flat terminal portion (a reflection of the experimental observations), changes in the aglycone bioavailabilities are limited (i.e., ≤ 1.3-fold). In conclusion, this study explores the possible role of intestinal glucuronide hydrolysis in the disposition of aglycone via simulations utilizing various PBPK models. The mechanistic observations should be helpful to better understand the complex glucuronidation in vivo.


Xenobiotica | 2012

Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes

Dong Dong; Roland Ako; Ming Hu; Baojian Wu

The UDP-glucuronosyltransferase (UGT) enzyme catalyzes the glucuronidation reaction which is a major metabolic and detoxification pathway in humans. Understanding the mechanisms for substrate recognition by UGT assumes great importance in an attempt to predict its contribution to xenobiotic/drug disposition in vivo. Spurred on by this interest, 2D/3D-quantitative structure activity relationships and pharmacophore models have been established in the absence of a complete mammalian UGT crystal structure. This review discusses the recent progress in modeling human UGT substrates including those with multiple sites of glucuronidation. A better understanding of UGT active site contributing to substrate selectivity (and regioselectivity) from the homologous enzymes (i.e. plant and bacterial UGTs, all belong to family 1 of glycosyltransferase (GT1)) is also highlighted, as these enzymes share a common catalytic mechanism and/or overlapping substrate selectivity.


Pharmaceutical Research | 2012

Accurate Prediction of Glucuronidation of Structurally Diverse Phenolics by Human UGT1A9 Using Combined Experimental and In Silico Approaches

Baojian Wu; Xiaoqiang Wang; Shuxing Zhang; Ming Hu

PurposeCatalytic selectivity of human UGT1A9, an important membrane-bound enzyme catalyzing glucuronidation of xenobiotics, was determined experimentally using 145 phenolics and analyzed by 3D-QSAR methods.MethodsCatalytic efficiency of UGT1A9 was determined by kinetic profiling. Quantitative structure activity relationships were analyzed using CoMFA and CoMSIA techniques. Molecular alignment of substrate structures was made by superimposing the glucuronidation site and its adjacent aromatic ring to achieve maximal steric overlap. For a substrate with multiple active glucuronidation sites, each site was considered a separate substrate.Results3D-QSAR analyses produced statistically reliable models with good predictive power (CoMFA: q2 = 0.548, r2 = 0.949, rpred2 = 0.775; CoMSIA: q2 = 0.579, r2 = 0.876, rpred2 = 0.700). Contour coefficient maps were applied to elucidate structural features among substrates that are responsible for selectivity differences. Contour coefficient maps were overlaid in the catalytic pocket of a homology model of UGT1A9, enabling identification of the UGT1A9 catalytic pocket with a high degree of confidence.ConclusionCoMFA/CoMSIA models can predict substrate selectivity and in vitro clearance of UGT1A9. Our findings also provide a possible molecular basis for understanding UGT1A9 functions and substrate selectivity.

Collaboration


Dive into the Baojian Wu's collaboration.

Top Co-Authors

Avatar

Ming Hu

University of Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Dong

University of Houston

View shared research outputs
Top Co-Authors

Avatar

Shuxing Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Song Gao

University of Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beibei Xu

University of Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen Jiang

University of Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge