Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baozheng Li is active.

Publication


Featured researches published by Baozheng Li.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses

Li Zhong; Baozheng Li; Cathryn Mah; Lakshmanan Govindasamy; Mavis Agbandje-McKenna; Mario Cooper; Roland W. Herzog; Irene Zolotukhin; Kenneth H. Warrington; Kirsten A. Weigel-Van Aken; Jacqueline A. Hobbs; Sergei Zolotukhin; Nicholas Muzyczka; Arun Srivastava

Recombinant adeno-associated virus 2 (AAV2) vectors are in use in several Phase I/II clinical trials, but relatively large vector doses are needed to achieve therapeutic benefits. Large vector doses also trigger an immune response as a significant fraction of the vectors fails to traffic efficiently to the nucleus and is targeted for degradation by the host cell proteasome machinery. We have reported that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects transduction by AAV2 vectors by impairing nuclear transport of the vectors. We have also observed that EGFR-PTK can phosphorylate AAV2 capsids at tyrosine residues. Tyrosine-phosphorylated AAV2 vectors enter cells efficiently but fail to transduce effectively, in part because of ubiquitination of AAV capsids followed by proteasome-mediated degradation. We reasoned that mutations of the surface-exposed tyrosine residues might allow the vectors to evade phosphorylation and subsequent ubiquitination and, thus, prevent proteasome-mediated degradation. Here, we document that site-directed mutagenesis of surface-exposed tyrosine residues leads to production of vectors that transduce HeLa cells ≈10-fold more efficiently in vitro and murine hepatocytes nearly 30-fold more efficiently in vivo at a log lower vector dose. Therapeutic levels of human Factor IX (F.IX) are also produced at an ≈10-fold reduced vector dose. The increased transduction efficiency of tyrosine-mutant vectors is due to lack of capsid ubiquitination and improved intracellular trafficking to the nucleus. These studies have led to the development of AAV vectors that are capable of high-efficiency transduction at lower doses, which has important implications in their use in human gene therapy.


Molecular Therapy | 2011

Novel Properties of Tyrosine-mutant AAV2 Vectors in the Mouse Retina

Hilda Petrs-Silva; Astra Dinculescu; Qiuhong Li; Wen-Tao Deng; Ji-jing Pang; Seok-Hong Min; Vince A. Chiodo; Andy W. Neeley; Lakshmanan Govindasamy; Antonette Bennett; Mavis Agbandje-McKenna; Li Zhong; Baozheng Li; Giridhara R. Jayandharan; Arun Srivastava; Alfred S. Lewin; William W. Hauswirth

Vectors based on adeno-associated virus serotype 2 (AAV2) have been used extensively in many gene-delivery applications, including several successful clinical trials for one type of Leber congenital amaurosis in the retina. Many studies have focused on improving AAV2 transduction efficiency and cellular specificity by genetically engineering its capsid. We have previously shown that vectors-containing single-point mutations of capsid surface tyrosines in serotypes AAV2, AAV8, and AAV9 displayed significantly increased transduction efficiency in the retina compared with their wild-type counterparts. In the present study, we evaluated the transduction characteristics of AAV2 vectors containing combinations of multiple tyrosine to phenylalanine mutations in seven highly conserved surface-exposed capsid tyrosine residues following subretinal or intravitreal delivery in adult mice. The multiply mutated vectors exhibited different in vivo transduction properties, with some having a unique ability of transgene expression in all retinal layers. Such novel vectors may be useful in developing valuable new therapeutic strategies for the treatment of many genetic diseases.


Virology | 2008

Tyrosine phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

Li Zhong; Baozheng Li; Giridhararao Jayandharan; Cathryn Mah; Lakshmanan Govindasamy; Mavis Agbandje-McKenna; Roland W. Herzog; Kirsten A. Weigel-Van Aken; Jacqueline A. Hobbs; Sergei Zolotukhin; Nicholas Muzyczka; Arun Srivastava

We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by approximately 68% and approximately 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.


Molecular Therapy | 2010

High-efficiency Transduction and Correction of Murine Hemophilia B Using AAV2 Vectors Devoid of Multiple Surface-exposed Tyrosines

David M. Markusic; Roland W. Herzog; George Aslanidi; Brad E. Hoffman; Baozheng Li; Mengxin Li; Giridhara R. Jayandharan; Chen Ling; Irene Zolotukhin; Wenqin Ma; Sergei Zolotukhin; Arun Srivastava; Li Zhong

Elimination of specific surface-exposed single tyrosine (Y) residues substantially improves hepatic gene transfer with adeno-associated virus type 2 (AAV2) vectors. Here, combinations of mutations in the seven potentially relevant Y residues were evaluated for further augmentation of transduction efficiency. These mutant capsids packaged viral genomes to similar titers and retained infectivity. A triple-mutant (Y444+500+730F) vector consistently had the highest level of in vivo gene transfer to murine hepatocytes, approximately threefold more efficient than the best single-mutants, and ~30-80-fold higher compared with the wild-type (WT) AAV2 capsids. Improvement of gene transfer was similar for both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors, indicating that these effects are independent of viral second-strand DNA synthesis. Furthermore, Y730F and triple-mutant vectors provided a long-term therapeutic and tolerogenic expression of human factor IX (hF.IX) in hemophilia B (HB) mice after administration of a vector dose that only results in subtherapeutic and transient expression with WT AAV2 encapsidated vectors. In summary, introduction of multiple tyrosine-mutations into the AAV2 capsid results in vectors that yield at least 30-fold improvement of transgene expression, thereby lowering the required therapeutic dose and potentially vector-related immunogenicity. Such vectors should be attractive for treatment of hemophilia and other genetic diseases.


Human Gene Therapy | 2010

Human Hepatocyte Growth Factor Receptor Is a Cellular Coreceptor for Adeno-Associated Virus Serotype 3

Chen Ling; Yuan Lu; Jasmine K. Kalsi; Giridhara R. Jayandharan; Baozheng Li; Wenqin Ma; Binbin Cheng; Samantha W.Y. Gee; Katherine E. McGoogan; Lakshmanan Govindasamy; Li Zhong; Mavis Agbandje-McKenna; Arun Srivastava

Adeno-associated viruses (AAVs) use a variety of cellular receptors/coreceptors to gain entry into cells. A number of AAV serotypes are now available, and the cognate receptors/coreceptors for only a handful of those have been identified thus far. Of the 10 commonly used AAV serotypes, AAV3 is by far the least efficient in transducing cells in general. However, in our more recent studies, we observed that AAV3 vectors transduced human liver cancer cells remarkably well, which led to the hypothesis that AAV3 uses hepatocyte growth factor receptor (HGFR) as a cellular coreceptor for viral entry. AAV3 infection of human liver cancer cell lines was strongly inhibited by hepatocyte growth factor, HGFR-specific small interfering RNA, and anti-HGFR antibody, which corroborated this hypothesis. However, AAV3 vectors failed to transduce murine hepatocytes, both in vitro and in vivo, suggesting that AAV3 specifically uses human HGFR, but not murine HGFR, as a cellular coreceptor for transduction. AAV3 may prove to be a useful vector for targeting human liver cancers for the potential gene therapy.


Human Gene Therapy | 2010

High-efficiency transduction of fibroblasts and mesenchymal stem cells by tyrosine-mutant AAV2 vectors for their potential use in cellular therapy.

Mengxin Li; Giridhara R. Jayandharan; Baozheng Li; Chen Ling; Wenqin Ma; Arun Srivastava; Li Zhong

Adeno-associated virus 2 (AAV2) vectors transduce fibroblasts and mesenchymal stem cells (MSCs) inefficiently, which limits their potential widespread applicability in combinatorial gene and cell therapy. We have reported that AAV2 vectors fail to traffic efficiently to the nucleus in murine fibroblasts. We have also reported that site-directed mutagenesis of surface-exposed tyrosine residues on viral capsids leads to improved intracellular trafficking of the mutant vectors, and the transduction efficiency of the single tyrosine-mutant vectors is ∼10-fold higher in human cells. In the current studies, we evaluated the transduction efficiency of single as well as multiple tyrosine-mutant AAV2 vectors in murine fibroblasts. Our results indicate that the Y444F mutant vectors transduce these cells most efficiently among the seven single-mutant vectors, with >30-fold increase in transgene expression compared with the wild-type vectors. When the Y444F mutation is combined with additional mutations (Y500F and Y730F), the transduction efficiency of the triple-mutant vectors is increased by ∼130-fold and the viral intracellular trafficking is also significant improved. Similarly, the triple-mutant vectors are capable of transducing up to 80-90% of bone marrow-derived primary murine as well as human MSCs. Thus, high-efficiency transduction of fibroblasts with reprogramming genes to generate induced pluripotent stem cells, and the MSCs for delivering therapeutic genes, should now be feasible with the tyrosine-mutant AAV vectors.


Human Gene Therapy | 2010

Optimized adeno-associated virus (AAV)-protein phosphatase-5 helper viruses for efficient liver transduction by single-stranded AAV vectors: therapeutic expression of factor IX at reduced vector doses.

Giridhara R. Jayandharan; Li Zhong; Brandon K. Sack; Angela E. Rivers; Mengxin Li; Baozheng Li; Roland W. Herzog; Arun Srivastava

Abstract Our studies have shown that coinjection of conventional single-stranded adeno-associated virus 2 (ssAAV2) vectors carrying the enhanced green fluorescent protein (EGFP) gene with self-complementary (sc) AAV2-T cell protein tyrosine phosphatase (TC-PTP) and scAAV2-protein phosphatase-5 (PP5) vectors resulted in an approximately 16-fold increase in EGFP expression in primary murine hepatocytes in vivo [Jayandharan, G.R., Zhong, L., Li, B., Kachniarz, B., and Srivastava, A. (2008). Gene Ther. 15, 1287-1293]. In the present studies, this strategy was further optimized to achieve transgene expression at reduced vector/helper virus doses. These included the use of scAAV helper viruses containing (1) hepatocyte-specific promoters, (2) tyrosine-mutant AAV2 capsids, and (3) additional AAV serotype vectors known to efficiently transduce hepatocytes. The hepatocyte-specific transthyretin (TTR) promoter was approximately 6- to 7-fold more efficient than the Rous sarcoma virus (RSV) promoter; tyrosine-mutant AAV2 capsids were approximately 6- to 11-fold more efficient than the wild-type AAV2 capsids; and the AAV8 serotype helper virus was approximately 16-fold more efficient than AAV2 serotype helper virus. With these modifications, the vector dose of the helper virus could be further reduced by approximately 50-fold. Last, coadministration of scAAV8-PP5 helper virus increased coagulation factor IX expression from an ssAAV2 vector by approximately 7- to 10-fold, thereby achieving therapeutic levels at lower vector doses. No adverse effect on hepatocytes was observed under any of these experimental conditions. The strategy presented here should be adaptable to any ssAAV transgene cassette and, specifically, liver-directed applications of ssAAV2 vectors containing larger genes that cannot be encapsidated in scAAV vectors.


Gene Therapy | 2008

Strategies for improving the transduction efficiency of single-stranded adeno-associated virus vectors in vitro and in vivo

Giridhara R. Jayandharan; Li Zhong; Baozheng Li; B Kachniarz; Alok Srivastava

Recombinant vectors based on adeno-associated virus type 2 (AAV) target the liver efficiently, but the transgene expression is limited to ∼5% of murine hepatocytes. Viral second-strand DNA synthesis continues to be a rate-limiting step for efficient transduction by the single-stranded AAV (ssAAV) vectors. This is due, in part, to the presence of a cellular chaperone (FK506-binding) protein, FKBP52, phosphorylated forms of which interact with the D-sequence in the inverted terminal repeats of AAV2 genome and inhibit the viral second-strand DNA synthesis. Our previous studies have documented that dephosphorylation of FKBP52 at tyrosine residues by the cellular T-cell protein tyrosine phosphatase (TC-PTP), and at serine/threonine residues by protein phosphatase 5 (PP5) enhances viral second-strand DNA synthesis and consequently, the transgene expression. We have also reported that coinfection with a self-complementary AAV (scAAV)-TC-PTP vector results in up to sixfold increase in the transduction efficiency of conventional ssAAV2 vectors in primary murine hepatocytes in vivo. We reasoned that coinfection with scAAV-TC-PTP and scAAV-PP5 vectors may lead to a further increase in the transduction efficiency of ssAAV2 vectors. We demonstrate here that this strategy does indeed lead to ∼16-fold increase in the transduction efficiency of conventional ssAAV vectors in primary murine hepatocytes in vivo following tail-vein injections. Neither scAAV2-TC-PTP nor scAAV2-PP5 vectors alone or together had any adverse effect on the hepatocytes. Thus, this coinfection strategy may be useful for achieving expression from recombinant ssAAV2 vectors containing larger genes, such as coagulation factor VIII, which exceed the packaging capacity of scAAV vectors, for the potential gene therapy of hemophilia A.


Cytotherapy | 2013

Optimizing the transduction efficiency of capsid-modified AAV6 serotype vectors in primary human hematopoietic stem cells in vitro and in a xenograft mouse model in vivo

Liujiang Song; M. Ariel Kauss; Etana Kopin; Manasa Chandra; Taihra Ul-Hasan; Erin Miller; Giridhara R. Jayandharan; Angela E. Rivers; George Aslanidi; Chen Ling; Baozheng Li; Wenqin Ma; Xiaomiao Li; Lourdes M. Andino; Li Zhong; Alice F. Tarantal; Mervin C. Yoder; Kamehameha K. Wong; Mengqun Tan; Arun Srivastava

BACKGROUND AIMS Although recombinant adeno-associated virus serotype 2 (AAV2) vectors have gained attention because of their safety and efficacy in numerous phase I/II clinical trials, their transduction efficiency in hematopoietic stem cells (HSCs) has been reported to be low. Only a few additional AAV serotype vectors have been evaluated, and comparative analyses of their transduction efficiency in HSCs from different species have not been performed. METHODS We evaluated the transduction efficiency of all available AAV serotype vectors (AAV1 through AAV10) in primary mouse, cynomolgus monkey and human HSCs. The transduction efficiency of the optimized AAV vectors was also evaluated in human HSCs in a murine xenograft model in vivo. RESULTS We observed that although there are only six amino acid differences between AAV1 and AAV6, AAV1, but not AAV6, transduced mouse HSCs well, whereas AAV6, but not AAV1, transduced human HSCs well. None of the 10 serotypes transduced cynomolgus monkey HSCs in vitro. We also evaluated the transduction efficiency of AAV6 vectors containing mutations in surface-exposed tyrosine residues. We observed that tyrosine (Y) to phenylalanine (F) point mutations in residues 445, 705 and 731 led to a significant increase in transgene expression in human HSCs in vitro and in a mouse xenograft model in vivo. CONCLUSIONS These studies suggest that the tyrosine-mutant AAV6 serotype vectors are the most promising vectors for transducing human HSCs and that it is possible to increase further the transduction efficiency of these vectors for their potential use in HSC-based gene therapy in humans.


Journal of Visualized Experiments | 2011

High-Efficiency Transduction of Liver Cancer Cells by Recombinant Adeno- Associated Virus Serotype 3 Vectors

Chen Ling; Yuan Lu; Binbin Cheng; Katherine E. McGoogan; Samantha W.Y. Gee; Wenqin Ma; Baozheng Li; George Aslanidi; Arun Srivastava

Recombinant vectors based on a non-pathogenic human parvovirus, the adeno-associated virus 2 (AAV2) have been developed, and are currently in use in a number of gene therapy clinical trials. More recently, a number of additional AAV serotypes have also been isolated, which have been shown to exhibit selective tissue-tropism in various small and large animal models1. Of the 10 most commonly used AAV serotypes, AAV3 is by far the least efficient in transducing cells and tissues in vitro as well as in vivo. However, in our recently published studies, we have documented that AAV3 vectors transduce human liver cancer - hepatoblastoma (HB) and hepatocellular carcinoma (HCC) - cell lines extremely efficiently because AAV3 utilizes human hepatocyte growth factor receptor as a cellular co-receptor for binding and entry in these cells2,3. In this article, we describe the steps required to achieve high-efficiency transduction of human liver cancer cells by recombinant AAV3 vectors carrying a reporter gene. The use of recombinant AAV3 vectors carrying a therapeutic gene may eventually lead to the potential gene therapy of liver cancers in humans.

Collaboration


Dive into the Baozheng Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Zhong

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Wenqin Ma

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Chen Ling

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Lu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge